Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hahn–Banach theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Theorem on extension of bounded linear functionals}} In [[functional analysis]], the '''Hahn–Banach theorem''' is a central result that allows the extension of [[Bounded operator|bounded linear functionals]] defined on a [[vector subspace]] of some [[vector space]] to the whole space. The theorem also shows that there are sufficient [[Continuous function (topology)|continuous]] linear functionals defined on every [[normed vector space]] in order to study the [[dual space]]. Another version of the Hahn–Banach theorem is known as the '''Hahn–Banach separation theorem''' or the [[hyperplane separation theorem]], and has numerous uses in [[convex geometry]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)