Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hankel matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Square matrix in which each ascending skew-diagonal from left to right is constant}} In [[linear algebra]], a '''Hankel matrix''' (or '''[[catalecticant]] matrix'''), named after [[Hermann Hankel]], is a rectangular matrix in which each ascending skew-diagonal from left to right is constant. For example, <math display=block>\qquad\begin{bmatrix} a & b & c & d & e \\ b & c & d & e & f \\ c & d & e & f & g \\ d & e & f & g & h \\ e & f & g & h & i \\ \end{bmatrix}.</math> More generally, a '''Hankel matrix''' is any <math>n \times n</math> [[matrix (mathematics)|matrix]] <math>A</math> of the form <math display=block>A = \begin{bmatrix} a_0 & a_1 & a_2 & \ldots & a_{n-1} \\ a_1 & a_2 & & &\vdots \\ a_2 & & & & a_{2n-4} \\ \vdots & & & a_{2n-4} & a_{2n-3} \\ a_{n-1} & \ldots & a_{2n-4} & a_{2n-3} & a_{2n-2} \end{bmatrix}.</math> In terms of the components, if the <math>i,j</math> element of <math>A</math> is denoted with <math>A_{ij}</math>, and assuming <math>i \le j</math>, then we have <math>A_{i,j} = A_{i+k,j-k}</math> for all <math>k = 0,...,j-i.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)