Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Homomorphism
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Structure-preserving map between two algebraic structures of the same type}} {{Distinguish|Holomorphism|Homeomorphism}} In [[algebra]], a '''homomorphism''' is a [[morphism|structure-preserving]] [[map (mathematics)|map]] between two [[algebraic structure]]s of the same type (such as two [[group (mathematics)|group]]s, two [[ring (mathematics)|ring]]s, or two [[vector space]]s). The word ''homomorphism'' comes from the [[Ancient Greek language]]: {{wikt-lang|grc|ὁμός}} ({{transliteration|grc|homos}}) meaning "same" and {{wikt-lang|grc|μορφή}} ({{transliteration|grc|morphe}}) meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German {{wikt-lang|de|ähnlich}} meaning "similar" to {{lang|grc|ὁμός}} meaning "same".<ref>{{Cite book|last=Fricke|first=Robert|url=https://archive.org/details/vorlesungenber01fricuoft/page/n5/mode/2up|title=Vorlesungen über die Theorie der automorphen Functionen|language=de|date=1897–1912|publisher=B. G. Teubner|oclc=29857037}}</ref> The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician [[Felix Klein]] (1849–1925).<ref>See: * {{cite journal |last1=Ritter |first1=Ernst |title=Die eindeutigen automorphen Formen vom Geschlecht Null, eine Revision und Erweiterung der Poincaré'schen Sätze |language=de |journal=Mathematische Annalen |date=1892 |volume=41 |pages=1–82 |doi=10.1007/BF01443449 |s2cid=121524108 |url=https://babel.hathitrust.org/cgi/pt?id=hvd.32044102918109&view=1up&seq=15 |trans-title=The unique automorphic forms of genus zero, a revision and extension of Poincaré's theorem |quote=[footnote p. 22:] Ich will nach einem Vorschlage von Hrn. Prof. Klein statt der umständlichen und nicht immer ausreichenden Bezeichnungen: 'holoedrisch, bezw. hemiedrisch u.s.w. isomorph' die Benennung 'isomorph' auf den Fall des ''holoedrischen'' Isomorphismus zweier Gruppen einschränken, sonst aber von 'Homomorphismus' sprechen, ...|trans-quote=Following a suggestion of Prof. Klein, instead of the cumbersome and not always satisfactory designations "holohedric, or hemihedric, etc. isomorphic", I will limit the denomination "isomorphic" to the case of a ''holohedric'' isomorphism of two groups; otherwise, however, [I will] speak of a "homomorphism", ...}} * {{cite journal |last1=Fricke |first1=Robert |title=Ueber den arithmetischen Charakter der zu den Verzweigungen (2,3,7) und (2,4,7) gehörenden Dreiecksfunctionen |language=de |journal=Mathematische Annalen |date=1892 |volume=41 |issue=3 |pages=443–468 |doi=10.1007/BF01443421 |s2cid=120022176 |url=https://babel.hathitrust.org/cgi/pt?id=hvd.32044102918109&view=1up&seq=471 |trans-title=On the arithmetic character of the triangle functions belonging to the branch points (2,3,7) and (2,4,7) |quote=[p. 466] Hierdurch ist, wie man sofort überblickt, eine homomorphe*) Beziehung der Gruppe Γ<sub>(63)</sub> auf die Gruppe der mod. n incongruenten Substitutionen mit rationalen ganzen Coefficienten der Determinante 1 begründet. ... *) Im Anschluss an einen von Hrn. Klein bei seinen neueren Vorlesungen eingeführten Brauch schreibe ich an Stelle der bisherigen Bezeichnung 'meroedrischer Isomorphismus' die sinngemässere 'Homomorphismus'.|trans-quote=Thus, as one immediately sees, a homomorphic relation of the group Γ<sub>(63)</sub> is based on the group of modulo n incongruent substitutions with rational whole coefficients of the determinant 1. ... Following a usage that has been introduced by Mr. Klein during his more recent lectures, I write in place of the earlier designation 'merohedral isomorphism' the more logical 'homomorphism'.}}</ref> Homomorphisms of vector spaces are also called [[linear map]]s, and their study is the subject of [[linear algebra]]. The concept of homomorphism has been generalized, under the name of [[morphism]], to many other structures that either do not have an underlying set, or are not algebraic. This generalization is the starting point of [[category theory]]. A homomorphism may also be an [[isomorphism]], an [[endomorphism]], an [[automorphism]], etc. (see below). Each of those can be defined in a way that may be generalized to any class of morphisms.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)