Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hyperbolic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Collective name of 6 mathematical functions}} {{Redirect|Hyperbolic curve|the geometric curve|Hyperbola}} {{Anchor|Sinh|Cosh|Tanh|Sech|Csch|Coth}} [[File:sinh cosh tanh.svg|333x333px|thumb]] In [[mathematics]], '''hyperbolic functions''' are analogues of the ordinary [[trigonometric function]]s, but defined using the [[hyperbola]] rather than the [[circle]]. Just as the points {{math|(cos ''t'', sin ''t'')}} form a [[unit circle|circle with a unit radius]], the points {{math|(cosh ''t'', sinh ''t'')}} form the right half of the [[unit hyperbola]]. Also, similarly to how the derivatives of {{math|sin(''t'')}} and {{math|cos(''t'')}} are {{math|cos(''t'')}} and {{math|–sin(''t'')}} respectively, the derivatives of {{math|sinh(''t'')}} and {{math|cosh(''t'')}} are {{math|cosh(''t'')}} and {{math|sinh(''t'')}} respectively. Hyperbolic functions are used to express the [[angle of parallelism]] in [[hyperbolic geometry]]. They are used to express [[Lorentz boost]]s as [[hyperbolic rotation]]s in [[special relativity]]. They also occur in the solutions of many linear [[differential equation]]s (such as the equation defining a [[catenary]]), [[Cubic equation#Hyperbolic solution for one real root|cubic equations]], and [[Laplace's equation]] in [[Cartesian coordinates]]. [[Laplace's equation]]s are important in many areas of [[physics]], including [[electromagnetic theory]], [[heat transfer]], and [[fluid dynamics]]. The basic hyperbolic functions are:<ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|authorlink=Eric W. Weisstein|title=Hyperbolic Functions| url=https://mathworld.wolfram.com/HyperbolicFunctions.html|access-date=2020-08-29|website=mathworld.wolfram.com|language=en}}</ref> * '''hyperbolic sine''' "{{math|sinh}}" ({{IPAc-en|ˈ|s|ɪ|ŋ|,_|ˈ|s|ɪ|n|tʃ|,_|ˈ|ʃ|aɪ|n}}),<ref>(1999) ''Collins Concise Dictionary'', 4th edition, HarperCollins, Glasgow, {{ISBN|0 00 472257 4}}, p. 1386</ref> * '''hyperbolic cosine''' "{{math|cosh}}" ({{IPAc-en|ˈ|k|ɒ|ʃ|,_|ˈ|k|oʊ|ʃ}}),<ref name="Collins Concise Dictionary p. 328">''Collins Concise Dictionary'', p. 328</ref> from which are derived:<ref name=":2">{{Cite web|title=Hyperbolic Functions|url=https://www.mathsisfun.com/sets/function-hyperbolic.html|access-date=2020-08-29|website=www.mathsisfun.com}}</ref> * '''hyperbolic tangent''' "{{math|tanh}}" ({{IPAc-en|ˈ|t|æ|ŋ|,_|ˈ|t|æ|n|tʃ|,_|ˈ|θ|æ|n}}),<ref>''Collins Concise Dictionary'', p. 1520</ref> * '''hyperbolic cotangent''' "{{math|coth}}" ({{IPAc-en|ˈ|k|ɒ|θ|,_|ˈ|k|oʊ|θ}}),<ref>''Collins Concise Dictionary'', p. 329</ref><ref>[http://www.mathcentre.ac.uk/resources/workbooks/mathcentre/hyperbolicfunctions.pdf tanh]</ref> * '''hyperbolic secant''' "{{math|sech}}" ({{IPAc-en|ˈ|s|ɛ|tʃ|,_|ˈ|ʃ|ɛ|k}}),<ref>''Collins Concise Dictionary'', p. 1340</ref> * '''hyperbolic cosecant''' "{{math|csch}}" or "{{math|cosech}}" ({{IPAc-en|ˈ|k|oʊ|s|ɛ|tʃ|,_|ˈ|k|oʊ|ʃ|ɛ|k}}<ref name="Collins Concise Dictionary p. 328"/>) corresponding to the derived trigonometric functions. The [[inverse hyperbolic functions]] are: * '''inverse hyperbolic sine''' "{{math|arsinh}}" (also denoted "{{math|sinh<sup>−1</sup>}}", "{{math|asinh}}" or sometimes "{{math|arcsinh}}")<ref>{{Citation | last=Woodhouse | first = N. M. J. | author-link = N. M. J. Woodhouse | title = Special Relativity | publisher = Springer | place = London | date = 2003 | page = 71 | isbn = 978-1-85233-426-0}}</ref><ref>{{Citation | editor1-last=Abramowitz | editor1-first=Milton | editor1-link=Milton Abramowitz | editor2-last=Stegun | editor2-first=Irene A. | editor2-link=Irene Stegun | title=Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | publisher=[[Dover Publications]] | location=New York | isbn=978-0-486-61272-0 | year=1972| title-link=Abramowitz and Stegun }}</ref><ref>[https://www.google.com/books?q=arcsinh+-library Some examples of using '''arcsinh'''] found in [[Google Books]].</ref> * '''inverse hyperbolic cosine''' "{{math|arcosh}}" (also denoted "{{math|cosh<sup>−1</sup>}}", "{{math|acosh}}" or sometimes "{{math|arccosh}}") * '''inverse hyperbolic tangent''' "{{math|artanh}}" (also denoted "{{math|tanh<sup>−1</sup>}}", "{{math|atanh}}" or sometimes "{{math|arctanh}}") * '''inverse hyperbolic cotangent''' "{{math|arcoth}}" (also denoted "{{math|coth<sup>−1</sup>}}", "{{math|acoth}}" or sometimes "{{math|arccoth}}") * '''inverse hyperbolic secant''' "{{math|arsech}}" (also denoted "{{math|sech<sup>−1</sup>}}", "{{math|asech}}" or sometimes "{{math|arcsech}}") * '''inverse hyperbolic cosecant''' "{{math|arcsch}}" (also denoted "{{math|arcosech}}", "{{math|csch<sup>−1</sup>}}", "{{math|cosech<sup>−1</sup>}}","{{math|acsch}}", "{{math|acosech}}", or sometimes "{{math|arccsch}}" or "{{math|arccosech}}") [[File:Hyperbolic functions-2.svg|thumb|upright=1.4|A [[Ray (geometry)|ray]] through the [[unit hyperbola]] {{math|1=''x''<sup>2</sup> − ''y''<sup>2</sup> = 1}} at the point {{math|(cosh ''a'', sinh ''a'')}}, where {{mvar|a}} is twice the area between the ray, the hyperbola, and the {{mvar|x}}-axis. For points on the hyperbola below the {{mvar|x}}-axis, the area is considered negative (see [[:Image:HyperbolicAnimation.gif|animated version]] with comparison with the trigonometric (circular) functions).]] The hyperbolic functions take a [[Real number|real]] [[argument of a function|argument]] called a [[hyperbolic angle]]. The magnitude of a hyperbolic angle is the [[area]] of its [[hyperbolic sector]] to ''xy'' = 1. The hyperbolic functions may be defined in terms of the [[hyperbolic sector#Hyperbolic triangle|legs of a right triangle]] covering this sector. In [[complex analysis]], the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are [[entire function]]s. As a result, the other hyperbolic functions are [[meromorphic function|meromorphic]] in the whole complex plane. By [[Lindemann–Weierstrass theorem]], the hyperbolic functions have a [[transcendental number|transcendental value]] for every non-zero [[algebraic number|algebraic value]] of the argument.<ref>{{Cite book | jstor=10.4169/j.ctt5hh8zn| title=Irrational Numbers | volume=11| last1=Niven| first1=Ivan| year=1985| publisher=Mathematical Association of America| isbn=9780883850381}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)