Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Immersion lithography
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Photolithography technique where there is a layer of water between a lens and a microchip}} [[Image:Immersion lithography illustration.svg|right|thumb|In immersion lithography, light travels down through a system of lenses and then a pool of water before reaching the [[photoresist]] on top of the [[wafer (electronics)|wafer.]]]] '''Immersion lithography''' is a technique used in [[Semiconductor device fabrication|semiconductor manufacturing]] to enhance the resolution and accuracy of the [[Photolithography|lithographic process]]. It involves using a liquid medium, typically water, between the lens and the [[Wafer (electronics)|wafer]] during exposure. By using a liquid with a higher [[refractive index]] than air, immersion lithography allows for smaller features to be created on the wafer.<ref>{{Cite journal |last=Flagello |first=Donis |date=2004-01-01 |title=Benefits and limitations of immersion lithography |url=http://nanolithography.spiedigitallibrary.org/article.aspx?doi=10.1117/1.1636768 |journal=Journal of Micro/Nanolithography, MEMS, and MOEMS |language=en |volume=3 |issue=1 |pages=104 |doi=10.1117/1.1636768 |bibcode=2004JMM&M...3..104M |issn=1932-5150|url-access=subscription }}</ref> Immersion lithography replaces the usual air gap between the final lens and the wafer surface with a liquid medium that has a refractive index greater than one. The [[angular resolution]] is increased by a factor equal to the refractive index of the liquid. Current immersion lithography tools use highly purified water for this liquid, achieving feature sizes below 45 nanometers.<ref>{{Cite web |url=http://www.dailytech.com/IDF09+Intel+Demonstrates+First+22nm+Chips+Discusses+Die+Shrink+Roadmap/article16312.htm |title=DailyTech - IDF09 Intel Demonstrates First 22nm Chips Discusses Die Shrink Roadmap |access-date=2009-12-07 |archive-url=https://web.archive.org/web/20100828220949/http://www.dailytech.com/IDF09+Intel+Demonstrates+First+22nm+Chips+Discusses+Die+Shrink+Roadmap/article16312.htm |archive-date=2010-08-28 |url-status=dead }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)