Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Improper rotation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Use American English|date=March 2019}} {{Short description|Rotation composed with a reflection}} In [[geometry]], an '''improper rotation'''<ref name="Morawiec">{{citation|title=Orientations and Rotations: Computations in Crystallographic Textures|first=Adam|last=Morawiec|publisher=Springer|year=2004|isbn=978-3-540-40734-8|page=7|url=https://books.google.com/books?id=m3RUd7z22M0C&pg=PA7}}.</ref> (also called '''rotation-reflection''',<ref>{{citation|title=Inorganic Chemistry|first1=Gary|last1=Miessler|first2=Paul|last2=Fischer|first3=Donald|last3=Tarr|publisher=Pearson|edition=5|year=2014|page=78}}</ref> '''rotoreflection,'''<ref name="Morawiec"/> '''rotary reflection''',<ref name="sss">{{citation|title=Symmetry, Shape, and Surfaces: An Introduction to Mathematics Through Geometry|first1=L. Christine|last1=Kinsey|author1-link=L. Christine Kinsey|first2=Teresa E.|last2=Moore|publisher=Springer|year=2002|isbn=978-1-930190-09-2|page=267|url=https://books.google.com/books?id=0clfF_CFG9EC&pg=PA267}}.</ref> or '''rotoinversion'''<ref>{{Cite book|title=Earth Materials|last=Klein, Philpotts|publisher=Cambridge University Press|year=2013|isbn=978-0-521-14521-3|pages=89β90}}</ref>) is an [[isometry]] in [[Euclidean space]] that is a combination of a [[Rotation (geometry)|rotation]] about an axis and a [[reflection (mathematics)|reflection]] in a plane perpendicular to that axis. Reflection and [[Point reflection|inversion]] are each a special case of improper rotation. Any improper rotation is an [[affine transformation]] and, in cases that keep the coordinate origin fixed, a [[linear transformation]].<ref>{{citation|title=Computer Graphics and Geometric Modeling|first=David|last=Salomon|publisher=Springer|year=1999|isbn=978-0-387-98682-1|page=84|url=https://books.google.com/books?id=9XZgfTmfAwYC&pg=PA84}}.</ref> It is used as a [[symmetry operation]] in the context of [[Symmetry (geometry)|geometric symmetry]], [[molecular symmetry]] and [[Crystallographic point group|crystallography]], where an object that is unchanged by a combination of rotation and reflection is said to have ''improper rotation symmetry''. {| class=wikitable align=center width=400 |+ Example polyhedra with rotoreflection symmetry !Group ! [[v:Symmetric_group_S4|''S''<sub>4</sub>]] ! ''S''<sub>6</sub> ! ''S''<sub>8</sub> ! ''S''<sub>10</sub> ! ''S''<sub>12</sub> |- align=center !Subgroups | ''C''<sub>2</sub> | ''C''<sub>3</sub>, ''S''<sub>2</sub> = ''C''<sub>i</sub> | ''C''<sub>4</sub>, ''C''<sub>2</sub> | ''C''<sub>5</sub>, ''S''<sub>2</sub> = ''C''<sub>i</sub> | ''C''<sub>6</sub>, ''S''<sub>4</sub>, ''C''<sub>3</sub>, ''C''<sub>2</sub> |- align=center !Example |[[File:2-antiprism rotoreflection.png|80px]]<BR>beveled digonal antiprism | [[File:3-antiprism_rotoreflection.png|80px]]<BR>[[triangular antiprism]] | [[File:Rotoreflection_example_square_antiprism.png|80px]]<BR>[[square antiprism]] | [[File:Rotoreflection_example_antiprism.png|100px]]<BR>[[pentagonal antiprism]] | [[File:6-antiprism_rotorereflection.png|100px]]<BR>[[hexagonal antiprism]] |- align=center | colspan=6 | [[Antiprism]]s with directed edges have rotoreflection symmetry.<BR>''p''-antiprisms for odd ''p'' contain [[inversion symmetry]], ''C''<sub>i</sub>. |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)