Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Injective function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Function that preserves distinctness}} {{Redirect|Injective|other uses|Injective module|and|Injective object}} {{Functions}} In [[mathematics]], an '''injective function''' (also known as '''injection''', or '''one-to-one function'''<ref>Sometimes ''one-one function'', in Indian mathematical education. {{Cite web |title=Chapter 1:Relations and functions |url=https://ncert.nic.in/ncerts/l/lemh101.pdf |via=NCERT |url-status=live |archive-url=https://web.archive.org/web/20231226194119/https://ncert.nic.in/ncerts/l/lemh101.pdf |archive-date= Dec 26, 2023 }}</ref> ) is a [[function (mathematics)|function]] {{math|''f''}} that maps [[Distinct (mathematics)|distinct]] elements of its domain to distinct elements of its codomain; that is, {{math|1=''x''<sub>1</sub> β ''x''<sub>2</sub>}} implies {{math|''f''(''x''<sub>1</sub>) {{β }} ''f''(''x''<sub>2</sub>)}} (equivalently by [[contraposition]], {{math|''f''(''x''<sub>1</sub>) {{=}} ''f''(''x''<sub>2</sub>)}} implies {{math|1=''x''<sub>1</sub> = ''x''<sub>2</sub>}}). In other words, every element of the function's [[codomain]] is the [[Image (mathematics)|image]] of {{em|at most}} one element of its [[Domain of a function|domain]].<ref name=":0">{{Cite web|url=https://www.mathsisfun.com/sets/injective-surjective-bijective.html|title=Injective, Surjective and Bijective|website=Math is Fun |access-date=2019-12-07}}</ref> The term {{em|one-to-one function}} must not be confused with {{em|one-to-one correspondence}} that refers to [[bijective function]]s, which are functions such that each element in the codomain is an image of exactly one element in the domain. A [[homomorphism]] between [[algebraic structure]]s is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for [[vector space]]s, an {{em|injective homomorphism}} is also called a {{em|[[monomorphism]]}}. However, in the more general context of [[category theory]], the definition of a monomorphism differs from that of an injective homomorphism.<ref>{{Cite web|url=https://stacks.math.columbia.edu/tag/00V5|title=Section 7.3 (00V5): Injective and surjective maps of presheaves |website=The Stacks project |access-date=2019-12-07}}</ref> This is thus a theorem that they are equivalent for algebraic structures; see {{slink|Homomorphism|Monomorphism}} for more details. A function <math>f</math> that is not injective is sometimes called many-to-one.<ref name=":0" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)