Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jacobi elliptic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function}} In [[mathematics]], the '''Jacobi elliptic functions''' are a set of basic [[elliptic function]]s. They are found in the description of the [[pendulum (mechanics)|motion of a pendulum]], as well as in the design of electronic [[elliptic filter]]s. While [[trigonometry|trigonometric functions]] are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other [[conic section]]s, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation <math>\operatorname{sn}</math> for <math>\sin</math>. The Jacobi elliptic functions are used more often in practical problems than the [[Weierstrass elliptic functions]] as they do not require notions of complex analysis to be defined and/or understood. They were introduced by {{harvs|txt|first=Carl Gustav Jakob |last=Jacobi|authorlink=Carl Gustav Jakob Jacobi|year=1829}}. [[Carl Friedrich Gauss]] had already studied special Jacobi elliptic functions in 1797, the [[lemniscate elliptic functions]] in particular,<ref>{{Cite book |last1=Armitage |first1=J. V. |last2=Eberlein| first2=W. F. |title=Elliptic Functions |publisher=Cambridge University Press |year=2006 |edition=First |isbn=978-0-521-78078-0}} p. 48</ref> but his work was published much later.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)