Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Polynomials used for interpolation}} {{Distinguish|text = [[Legendre polynomials]] (the orthogonal basis of function space)}} [[Image:Lagrange polynomial.svg|thumb|upright=1.5|This image shows, for four points (<span style="color:#5e81B5;">(−9, 5)</span>, <span style="color:#e19c24;">(−4, 2)</span>, <span style="color:#8FB131;">(−1, −2)</span>, <span style="color:#EC6235;">(7, 9)</span>), the (cubic) interpolation polynomial <span style="color:black;">''L''(''x'')</span> (dashed, black), which is the sum of the ''scaled'' basis polynomials <span style="color:#5e81B5;">y<sub>0</sub>''ℓ''<sub>0</sub>(''x'')</span>, <span style="color:#e19c24;">y<sub>1</sub>''ℓ''<sub>1</sub>(''x'')</span>, <span style="color:#8FB131;">y<sub>2</sub>''ℓ''<sub>2</sub>(''x'')</span> and <span style="color:#EC6235;">y<sub>3</sub>''ℓ''<sub>3</sub>(''x'')</span>. The interpolation polynomial passes through all four control points, and each ''scaled'' basis polynomial passes through its respective control point and is 0 where ''x'' corresponds to the other three control points.]] In [[numerical analysis]], the '''Lagrange interpolating polynomial''' is the unique [[polynomial]] of lowest [[degree of a polynomial|degree]] that [[polynomial interpolation|interpolates]] a given set of data. Given a data set of [[graph of a function|coordinate pairs]] <math>(x_j, y_j)</math> with <math>0 \leq j \leq k,</math> the <math>x_j</math> are called ''nodes'' and the <math>y_j</math> are called ''values''. The Lagrange polynomial <math>L(x)</math> has degree <math display=inline>\leq k</math> and assumes each value at the corresponding node, <math>L(x_j) = y_j.</math> Although named after [[Joseph-Louis Lagrange]], who published it in 1795,<ref> {{cite book |last=Lagrange |first=Joseph-Louis |author-link= Joseph-Louis Lagrange |title=Leçons Elémentaires sur les Mathématiques |language=fr |year=1795 |chapter=Leçon Cinquième. Sur l'usage des courbes dans la solution des problèmes |place=Paris}} Republished in {{cite book |last=Lagrange |first=Joseph-Louis |editor-last=Serret |editor-first=Joseph-Alfred |editor-link=Joseph-Alfred Serret |display-authors=0 |title=Oeuvres de Lagrange |year=1877 |volume=7 |publisher=Gauthier-Villars |pages=[https://archive.org/details/oeuvresdelagrang07lagr/page/271 271–287] }} Translated as {{cite book |last=Lagrange |first=Joseph-Louis |display-authors=0 |translator-last=McCormack |translator-first=Thomas J. |title=Lectures on Elementary Mathematics |edition=2nd |publisher=Open Court |year=1901 |chapter=Lecture V. On the Employment of Curves in the Solution of Problems |chapter-url=https://archive.org/details/lecturesonelemen00lagriala/page/127 |pages=127–149}}</ref> the method was first discovered in 1779 by [[Edward Waring]].<ref>{{cite journal |title=Problems concerning interpolations |first=Edward |last=Waring |author-link=Edward Waring |journal=[[Philosophical Transactions of the Royal Society]] |year=1779 |volume=69 |pages=59–67 |url=https://archive.org/details/philosophicaltra6917roya/page/59 |doi=10.1098/rstl.1779.0008 |doi-access= }}</ref> It is also an easy consequence of a formula published in 1783 by [[Leonhard Euler]].<ref>{{Cite journal | last1=Meijering | first1=Erik | title=A chronology of interpolation: from ancient astronomy to modern signal and image processing | doi=10.1109/5.993400 | year=2002 | journal=Proceedings of the IEEE | volume=90 | issue=3 | pages=319–342 | url = http://bigwww.epfl.ch/publications/meijering0201.pdf}}</ref> Uses of Lagrange polynomials include the [[Newton–Cotes formulas|Newton–Cotes method]] of [[numerical integration]], [[Shamir's Secret Sharing|Shamir's secret sharing scheme]] in [[cryptography]], and [[Reed–Solomon error correction]] in [[coding theory]]. For equispaced nodes, Lagrange interpolation is susceptible to [[Runge's phenomenon]] of large oscillation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)