Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lah number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical sequence}} {{Use American English|date = March 2019}} [[File:Lah numbers.svg|thumb|upright=1.35|Illustration of the unsigned Lah numbers for ''n'' and ''k'' between 1 and 4]] In [[mathematics]], the '''(signed and unsigned) Lah numbers''' are [[coefficient]]s expressing [[rising factorial]]s in terms of [[falling factorial]]s and vice versa. They were discovered by [[Ivo Lah]] in 1954.<ref>{{cite journal | first=Ivo | last=Lah | title=A new kind of numbers and its application in the actuarial mathematics | journal=Boletim do Instituto dos Actuários Portugueses | volume=9 | year=1954 | pages=7–15}}</ref><ref>[https://books.google.com/books?id=zWgIPlds29UC John Riordan, ''Introduction to Combinatorial Analysis''], Princeton University Press (1958, reissue 1980) {{isbn|978-0-691-02365-6}} (reprinted again in 2002 by Dover Publications).</ref> Explicitly, the unsigned Lah numbers <math>L(n, k)</math> are given by the formula involving the [[binomial coefficient]] <math display="block"> L(n,k) = {n-1 \choose k-1} \frac{n!}{k!}</math> for <math>n \geq k \geq 1</math>. Unsigned Lah numbers have an interesting meaning in [[combinatorics]]: they count the number of ways a [[Set (mathematics)|set]] of ''<math display="inline">n</math>'' elements can be [[Partition of a set|partition]]ed into ''<math display="inline">k</math>'' nonempty linearly ordered [[subset]]s.<ref>{{cite journal | title=Combinatorial Interpretation of Unsigned Stirling and Lah Numbers | first1=Marko | last1=Petkovsek | first2=Tomaz | last2=Pisanski | journal=Pi Mu Epsilon Journal | volume=12 | number=7 | date = Fall 2007 | pages=417–424 | jstor=24340704}}</ref> Lah numbers are related to [[Stirling number]]s.<ref>{{cite book | first=Louis | last=Comtet | title=Advanced Combinatorics | publisher=Reidel | location=Dordrecht, Holland | year=1974 | url=https://archive.org/details/Comtet_Louis_-_Advanced_Coatorics | page=[https://archive.org/details/Comtet_Louis_-_Advanced_Coatorics/page/n83 156]| isbn=9789027703804 }}</ref> For <math display="inline">n \geq 1</math>, the Lah number <math display="inline">L(n, 1)</math> is equal to the [[factorial]] <math display="inline">n!</math> in the interpretation above, the only partition of <math display="inline">\{1, 2, 3 \}</math> into 1 set can have its set ordered in 6 ways:<math display="block">\{(1, 2, 3)\}, \{(1, 3, 2)\}, \{(2, 1, 3)\}, \{(2, 3, 1)\}, \{(3, 1, 2)\}, \{(3, 2, 1)\}</math><math display="inline">L(3, 2)</math> is equal to 6, because there are six partitions of <math display="inline">\{1, 2, 3 \}</math> into two ordered parts:<math display="block">\{1, (2, 3) \}, \{1, (3, 2) \}, \{2, (1, 3) \}, \{2, (3, 1) \}, \{3, (1, 2) \}, \{3, (2, 1) \}</math><math display="inline">L(n, n)</math> is always 1 because the only way to partition <math display="inline">\{1, 2, \ldots, n\}</math> into <math>n</math> non-empty subsets results in subsets of size 1, that can only be permuted in one way. In the more recent literature,<ref>{{cite arXiv |eprint=1412.8721 |first=Mark |last=Shattuck |title=Generalized r-Lah numbers |date=2014|class=math.CO }}</ref><ref>{{Cite journal |last1=Nyul |first1=Gábor |last2=Rácz |first2=Gabriella |date=2015-10-06 |title=The r-Lah numbers |url=https://www.sciencedirect.com/science/article/pii/S0012365X14001241 |journal=Discrete Mathematics |series=Seventh Czech-Slovak International Symposium on Graph Theory, Combinatorics, Algorithms and Applications, Košice 2013 |language=en |volume=338 |issue=10 |pages=1660–1666 |doi=10.1016/j.disc.2014.03.029 |issn=0012-365X|hdl=2437/213886 |hdl-access=free }}</ref> [[Jovan Karamata|Karamata]]–[[Donald Knuth|Knuth]] style notation has taken over. Lah numbers are now often written as<math display="block">L(n,k) = \left\lfloor {n \atop k} \right\rfloor</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)