Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lambda point
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Superfluid transition temperature of helium-4}} [[File:Lambda transition.svg|thumb|250px|The plot of the specific heat capacity versus temperature.]] The '''lambda point''' is the [[temperature]] at which normal fluid [[helium]] (helium I) makes the transition to [[superfluid]] state ([[helium II]]). At pressure of 1 [[atmosphere (unit)|atmosphere]], the transition occurs at approximately 2.17 [[Kelvin|K]]. The lowest pressure at which He-I and He-II can coexist is the vapor−He-I−He-II [[triple point]] at {{convert|2.1768|K|C}} and {{convert|5.0418|kPa|atm|abbr=on}}, which is the "saturated [[vapor pressure]]" at that temperature (pure helium gas in thermal equilibrium over the liquid surface, in a [[Hermetic seal|hermetic]] container).<ref name=Donnelly>{{cite journal| title=The Observed Properties of Liquid Helium at the Saturated Vapor Pressure | first1=Russell J.| last1=Donnelly| first2=Carlo F.| last2=Barenghi | journal=[[Journal of Physical and Chemical Reference Data]]| year=1998| volume=27| issue=6| pages=1217–1274| doi=10.1063/1.556028|bibcode = 1998JPCRD..27.1217D }}</ref> The highest pressure at which He-I and He-II can coexist is the [[Body-centered cubic|bcc]]−He-I−He-II triple point with a helium solid at {{convert|1.762|K|C}}, {{convert|29.725|atm|kPa|abbr=on}}.<ref name=Hoffer>{{cite journal| title=Thermodynamic properties of <sup>4</sup>He. II. The bcc phase and the P-T and VT phase diagrams below 2 K | first1=J. K.| last1=Hoffer| first2=W. R.| last2=Gardner| first3=C. G.| last3=Waterfield| first4=N. E.| last4=Phillips| journal=[[Journal of Low Temperature Physics]]| date=April 1976| volume=23| issue=1| pages=63–102| doi=10.1007/BF00117245|bibcode = 1976JLTP...23...63H | s2cid=120473493}}</ref> The point's name derives from the graph (pictured) that results from plotting the [[specific heat capacity]] as a function of [[temperature]] (for a given pressure in the above range, in the example shown, at 1 atmosphere), which resembles the [[Greek language|Greek]] letter [[lambda]] <math>\lambda</math>. The specific heat capacity has a sharp peak as the temperature approaches the lambda point. The tip of the peak is so sharp that a critical exponent characterizing the divergence of the heat capacity can be measured precisely only in zero gravity, to provide a uniform density over a substantial volume of fluid. Hence, the heat capacity was measured within 2 nK below the transition in an experiment included in a [[Space Shuttle]] payload in 1992.<ref name=JPL>{{cite journal| title=Heat Capacity and Thermal Relaxation of Bulk Helium very near the Lambda Point | first1=J.A.| last1=Lipa| first2=D. R.| last2=Swanson| first3=J. A.| last3=Nissen| first4=T. C. P.| last4=Chui| first5=U. E.| last5=Israelsson| journal=[[Physical Review Letters]]| year=1996| volume=76| issue=6| pages=944–7| doi=10.1103/PhysRevLett.76.944|bibcode = 1996PhRvL..76..944L| pmid=10061591| hdl=2060/19950007794| s2cid=29876364| hdl-access=free}}</ref>{{unsolved|physics|Explain the discrepancy between the experimental and theoretical determinations of the heat capacity critical exponent {{math|''α''}} for the superfluid transition in helium-4.<ref name="Rychkov"/> }} Although the heat capacity has a peak, it does not tend towards [[infinity]] (contrary to what the graph may suggest), but has finite limiting values when approaching the transition from above and below.<ref name=JPL /> The behavior of the heat capacity near the peak is described by the formula <math>C\approx A_\pm t^{-\alpha}+B_\pm</math> where <math>t=|1-T/T_c|</math> is the reduced temperature, <math>T_c</math> is the Lambda point temperature, <math>A_\pm,B_\pm</math> are constants (different above and below the transition temperature), and {{math|''α''}} is the [[critical exponent]]: <math>\alpha=-0.0127(3)</math>.<ref name=JPL /><ref>{{Cite journal|last1=Lipa|first1=J. A.|last2=Nissen|first2=J. A.|last3=Stricker|first3=D. A.|last4=Swanson|first4=D. R.|last5=Chui|first5=T. C. P.|date=2003-11-14|title=Specific heat of liquid helium in zero gravity very near the lambda point|journal=Physical Review B|volume=68|issue=17|pages=174518|doi=10.1103/PhysRevB.68.174518|bibcode=2003PhRvB..68q4518L|arxiv=cond-mat/0310163|s2cid=55646571}}</ref> Since this exponent is negative for the superfluid transition, specific heat remains finite.<ref>For other phase transitions <math>\alpha</math> may be positive (e.g. <math>\alpha\approx+0.1</math> for [[Critical point (thermodynamics)|the liquid-vapor critical point]] which has [[Ising critical exponents]]). For those phase transitions specific heat does tend to infinity.</ref> The quoted experimental value of {{math|''α''}} is in a significant disagreement<ref>{{Cite book|last=Vicari|first=Ettore|chapter=Critical phenomena and renormalization-group flow of multi-parameter Phi4 theories |date=2008-03-21|title=Proceedings of the XXV International Symposium on Lattice Field Theory — PoS(LATTICE 2007)|volume=42|language=en|location=Regensburg, Germany|publisher=Sissa Medialab|pages=023|doi=10.22323/1.042.0023|doi-access=free}}</ref><ref name="Rychkov">{{Cite journal|last=Rychkov|first=Slava|date=2020-01-31|title=Conformal bootstrap and the λ-point specific heat experimental anomaly|url=https://www.condmatjclub.org/?p=4037|journal=Journal Club for Condensed Matter Physics|language=en|doi=10.36471/JCCM_January_2020_02|doi-access=free}}</ref> with the most precise theoretical determinations<ref>{{Cite journal|last1=Campostrini|first1=Massimo|last2=Hasenbusch|first2=Martin|last3=Pelissetto|first3=Andrea|last4=Vicari|first4=Ettore|date=2006-10-06|title=Theoretical estimates of the critical exponents of the superfluid transition in $^{4}\mathrm{He}$ by lattice methods|journal=Physical Review B|volume=74|issue=14|pages=144506|doi=10.1103/PhysRevB.74.144506|arxiv=cond-mat/0605083|s2cid=118924734}}</ref><ref>{{Cite journal|last=Hasenbusch|first=Martin|date=2019-12-26|title=Monte Carlo study of an improved clock model in three dimensions|arxiv=1910.05916|journal=Physical Review B|volume=100|issue=22|pages=224517|doi=10.1103/PhysRevB.100.224517|issn=2469-9950|bibcode=2019PhRvB.100v4517H|s2cid=204509042}}</ref><ref>{{cite journal|last1=Chester|first1=Shai M.|last2=Landry|first2=Walter|last3=Liu|first3=Junyu|last4=Poland|first4=David|last5=Simmons-Duffin|first5=David|last6=Su|first6=Ning|last7=Vichi|first7=Alessandro|title=Carving out OPE space and precise O(2) model critical exponents|journal=Journal of High Energy Physics|year=2020|volume=2020|issue=6|page=142|doi=10.1007/JHEP06(2020)142|arxiv=1912.03324|bibcode=2020JHEP...06..142C|s2cid=208910721}}</ref> coming from high temperature expansion techniques, [[Monte Carlo method|Monte Carlo]] methods and the [[conformal bootstrap]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)