Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Laplace distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Probability distribution}} {{Probability distribution |name =Laplace |type =density |pdf_image =[[Image:Laplace pdf mod.svg|325px|Probability density plots of Laplace distributions]] |cdf_image =[[Image:Laplace cdf mod.svg|325px|Cumulative distribution plots of Laplace distributions]] |parameters =<math>\mu</math> [[location parameter|location]] ([[real number|real]])<br /><math>b > 0</math> [[scale parameter|scale]] (real) |support =<math>\mathbb{R}</math> |pdf =<math>\frac{1}{2b} \exp \left(-\frac{|x-\mu|}b \right)</math> |cdf =<math>\begin{cases} \frac{1}{2} \exp \left( \frac{x-\mu}{b} \right) & \text{if }x \leq \mu \\[8pt] 1-\frac{1}{2} \exp \left( -\frac{x-\mu}{b} \right) & \text{if }x \geq \mu \end{cases}</math> |quantile =<math>\begin{cases} \mu+b \ln \left( 2F\right) & \text{if }F \leq \frac{1}{2} \\[8pt] \mu-b\ln \left( 2-2F\right) & \text{if }F \geq \frac{1}{2} \end{cases}</math> |mean =<math>\mu</math> |median =<math>\mu</math> |mode =<math>\mu</math> |variance =<math>2b^2</math> |mad =<math>b \ln 2</math> |skewness =<math>0</math> |kurtosis =<math>3</math> |entropy =<math>\log(2be)</math> |mgf =<math>\frac{\exp(\mu t)}{1-b^2 t^2} \text{ for }|t| < 1/b</math> |char =<math>\frac{\exp(\mu it)}{1+b^2 t^2}</math> |ES =<math> \begin{cases} \mu +b \left(\frac{p}{1-p} \right)(1 - \ln (2p)) &, p < .5 \\ \mu + b\left(1 - \ln \left(2(1-p)\right) \right) &, p \geq .5 \end{cases}</math><ref name="norton">{{cite journal |last1=Norton |first1=Matthew |last2=Khokhlov |first2=Valentyn |last3=Uryasev |first3=Stan |year=2019 |title=Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation |journal=Annals of Operations Research |volume=299 |issue=1β2 |pages=1281β1315 |publisher=Springer|doi=10.1007/s10479-019-03373-1 |arxiv=1811.11301 |url=http://uryasev.ams.stonybrook.edu/wp-content/uploads/2019/10/Norton2019_CVaR_bPOE.pdf |access-date=2023-02-27}}</ref> |bPOE =<math>\begin{cases} \frac{1}{2}e^{1-\left(\frac{x-\mu}{b} \right)}&, x \geq \mu +b \\ 1 - \frac{z}{\mathcal{W}( -2e^{-z-1}z)} &, x < \mu + b \end{cases}</math> Where <math>z=\frac{x-\mu}{b}</math>, and <math>\mathcal{W}</math> is the [[Lambert W function|Lambert-W function]]<ref name="norton"/> }} In [[probability theory]] and [[statistics]], the '''Laplace distribution''' is a continuous [[probability distribution]] named after [[Pierre-Simon Laplace]]. It is also sometimes called the '''double exponential distribution''', because it can be thought of as two [[exponential distribution]]s (with an additional location parameter) spliced together along the x-axis,<ref>{{Citation |last=Chattamvelli |first=Rajan |title=Laplace Distribution |date=2021 |work=Continuous Distributions in Engineering and the Applied Sciences β Part II |pages=189β199 |url=https://link.springer.com/10.1007/978-3-031-02435-1_4 |access-date=2025-04-04 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-031-02435-1_4 |isbn=978-3-031-01307-2 |last2=Shanmugam |first2=Ramalingam}}</ref> although the term is also sometimes used to refer to the [[Gumbel distribution]]. The difference between two [[Independent identically-distributed random variables|independent identically distributed]] exponential random variables is governed by a Laplace distribution, as is a [[Brownian motion]] evaluated at an exponentially distributed random time{{Citation needed|reason=Brownian motion is not mentioned elsewhere in this article. Either this topic should be expanded upon in the article, or there should be a citation justifying the claim.|date=October 2023}}. Increments of [[Laplace motion]] or a [[variance gamma process]] evaluated over the time scale also have a Laplace distribution.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)