Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Learning classifier system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Paradigm of rule-based machine learning methods}} [[File:Function approximation with LCS rules.jpg|thumb|2D visualization of LCS rules learning to approximate a 3D function. Each blue ellipse represents an individual rule covering part of the solution space. (Adapted from images taken from XCSF<ref name=":9">{{Cite journal|last1=Stalph|first1=Patrick O.|last2=Butz|first2=Martin V.|date=2010-02-01|title=JavaXCSF: The XCSF Learning Classifier System in Java|journal=ACM SIGEVOlution|volume=4|issue=3|pages=16–19|doi=10.1145/1731888.1731890|s2cid=16861908|issn=1931-8499}}</ref> with permission from Martin Butz)]] '''Learning classifier systems''', or '''LCS''', are a paradigm of [[rule-based machine learning]] methods that combine a discovery component (e.g. typically a [[genetic algorithm]] in [[evolutionary computation]]) with a learning component (performing either [[supervised learning]], [[reinforcement learning]], or [[unsupervised learning]]).<ref name=":1">{{Cite journal|last1=Urbanowicz|first1=Ryan J.|last2=Moore|first2=Jason H.|date=2009-09-22|title=Learning Classifier Systems: A Complete Introduction, Review, and Roadmap|journal=Journal of Artificial Evolution and Applications|language=en|volume=2009|pages=1–25|doi=10.1155/2009/736398|issn=1687-6229|doi-access=free}}</ref> Learning classifier systems seek to identify a set of context-dependent rules that collectively store and apply knowledge in a [[piecewise]] manner in order to make predictions (e.g. [[behavior modeling]],<ref>{{Cite journal|last=Dorigo|first=Marco|title=Alecsys and the AutonoMouse: Learning to control a real robot by distributed classifier systems|journal=Machine Learning|language=en|volume=19|issue=3|pages=209–240|doi=10.1007/BF00996270|issn=0885-6125|year=1995|doi-access=free}}</ref> [[Statistical classification|classification]],<ref>{{Cite journal|last1=Bernadó-Mansilla|first1=Ester|last2=Garrell-Guiu|first2=Josep M.|date=2003-09-01|title=Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks|journal=Evolutionary Computation|volume=11|issue=3|pages=209–238|doi=10.1162/106365603322365289|pmid=14558911|s2cid=9086149|issn=1063-6560}}</ref><ref name=":0">{{Cite journal|last1=Urbanowicz|first1=Ryan J.|last2=Moore|first2=Jason H.|date=2015-04-03|title=ExSTraCS 2.0: description and evaluation of a scalable learning classifier system|journal=Evolutionary Intelligence|language=en|volume=8|issue=2–3|pages=89–116|doi=10.1007/s12065-015-0128-8|issn=1864-5909|pmc=4583133|pmid=26417393}}</ref> [[data mining]],<ref name=":0" /><ref>{{Cite book|title=Advances in Learning Classifier Systems|url=https://archive.org/details/advanceslearning00lanz|url-access=limited|last1=Bernadó|first1=Ester|last2=Llorà|first2=Xavier|last3=Garrell|first3=Josep M.|chapter=XCS and GALE: A Comparative Study of Two Learning Classifier Systems on Data Mining |date=2001-07-07|publisher=Springer Berlin Heidelberg|isbn=9783540437932|editor-last=Lanzi|editor-first=Pier Luca|series=Lecture Notes in Computer Science|volume=2321 |pages=[https://archive.org/details/advanceslearning00lanz/page/n120 115]–132|language=en|doi=10.1007/3-540-48104-4_8|editor-last2=Stolzmann|editor-first2=Wolfgang|editor-last3=Wilson|editor-first3=Stewart W.}}</ref><ref>{{Cite book|title=Learning Classifier Systems|url=https://archive.org/details/learningclassifi00kova_690|url-access=limited|last1=Bacardit|first1=Jaume|last2=Butz|first2=Martin V.|chapter=Data Mining in Learning Classifier Systems: Comparing XCS with GAssist |date=2007-01-01|publisher=Springer Berlin Heidelberg|isbn=9783540712305|editor-last=Kovacs|editor-first=Tim|series=Lecture Notes in Computer Science|volume=4399 |pages=[https://archive.org/details/learningclassifi00kova_690/page/n291 282]–290|language=en|doi=10.1007/978-3-540-71231-2_19|editor-last2=Llorà|editor-first2=Xavier|editor-last3=Takadama|editor-first3=Keiki|editor-last4=Lanzi|editor-first4=Pier Luca|editor-last5=Stolzmann|editor-first5=Wolfgang|editor-last6=Wilson|editor-first6=Stewart W.|citeseerx = 10.1.1.553.4679}}</ref> [[Regression analysis|regression]],<ref>{{Cite book|last1=Urbanowicz|first1=Ryan|last2=Ramanand|first2=Niranjan|last3=Moore|first3=Jason|title=Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation |chapter=Continuous Endpoint Data Mining with ExSTraCS |date=2015-01-01|series=GECCO Companion '15|location=New York, NY, USA|publisher=ACM|pages=1029–1036|doi=10.1145/2739482.2768453|isbn=9781450334884|s2cid=11908241}}</ref> [[function approximation]],<ref>{{Cite journal|last1=Butz|first1=M. V.|last2=Lanzi|first2=P. L.|last3=Wilson|first3=S. W.|date=2008-06-01|title=Function Approximation With XCS: Hyperellipsoidal Conditions, Recursive Least Squares, and Compaction|journal=IEEE Transactions on Evolutionary Computation|volume=12|issue=3|pages=355–376|doi=10.1109/TEVC.2007.903551|s2cid=8861046|issn=1089-778X}}</ref> or [[Strategy (game theory)|game strategy]]). This approach allows complex [[Feasible region|solution spaces]] to be broken up into smaller, simpler parts for the reinforcement learning that is inside artificial intelligence research. The founding concepts behind learning classifier systems came from attempts to model [[complex adaptive system]]s, using rule-based agents to form an artificial cognitive system (i.e. [[artificial intelligence]]).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)