Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lebesgue covering dimension
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Topologically invariant definition of the dimension of a space}} {{more footnotes|date=April 2018}} In [[mathematics]], the '''Lebesgue covering dimension''' or '''topological dimension''' of a [[topological space]] is one of several different ways of defining the [[dimension]] of the space in a [[topological invariant|topologically invariant]] way.<ref name="Lebesgue">{{cite journal|url=http://matwbn.icm.edu.pl/ksiazki/fm/fm2/fm2130.pdf|title=Sur les correspondances entre les points de deux espaces|volume= 2 |year= 1921|first=Henri|last= Lebesgue| author-link= Henri Lebesgue|journal= [[Fundamenta Mathematicae]]| pages= 256β285|doi= 10.4064/fm-2-1-256-285|lang=fr}}</ref><ref name="Duda">{{cite journal|title=The origins of the concept of dimension|volume=42|year= 1979|first=R.|last= Duda|journal=Colloquium Mathematicum |pages= 95β110|doi=10.4064/cm-42-1-95-110|url=https://www.impan.pl/en/publishing-house/journals-and-series/colloquium-mathematicum/all/42/1/102445/the-origins-of-the-concept-of-dimension|mr=0567548|doi-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)