Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Level set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Subset of a function's domain on which its value is equal}} {{for|the computational technique|Level-set method}} {{redirect|Level surface|the application to force fields|Equipotential surface|water level surfaces|Equigeopotential}} {{Use American English|date = April 2019}} {{multiple image |align=right |width=140 |image1=Level sets linear function 2d.svg |caption1=Points at constant slices of {{math|1=''x''{{sub|2}} = ''f'' (''x''{{sub|1}})}}. |image2=Level sets linear function 3d.svg |caption2=Lines at constant slices of {{math|1=''x''{{sub|3}} = ''f'' (''x''{{sub|1}}, ''x''{{sub|2}})}}. |image3=Level sets linear function 4d.svg |caption3=Planes at constant slices of {{math|1=''x''{{sub|4}} = ''f'' (''x''{{sub|1}}, ''x''{{sub|2}}, ''x''{{sub|3}})}}. |footer={{math|(''n'' β 1)}}-dimensional level sets for functions of the form {{math|1=''f'' (''x''{{sub|1}}, ''x''{{sub|2}}, β¦, ''x{{sub|n}}'') = ''a''{{sub|1}}''x''{{sub|1}} + ''a''{{sub|2}}''x''{{sub|2}} + β― + ''a{{sub|n}}x{{sub|n}}''}} where {{math|''a''{{sub|1}}, ''a''{{sub|2}}, β¦, ''a{{sub|n}}''}} are constants, in {{math|(''n'' + 1)}}-dimensional Euclidean space, for {{math|1=''n'' = 1, 2, 3}}.}} {{multiple image |width=140 |align=right |image1=Level sets non-linear function 2d.svg |caption1=Points at constant slices of {{math|1=''x''{{sub|2}} = ''f'' (''x''{{sub|1}})}}. |image2=Level sets non-linear function 3d.svg |caption2=Contour curves at constant slices of {{math|1=''x''{{sub|3}} = ''f'' (''x''{{sub|1}}, ''x''{{sub|2}})}}. |image3=Level sets non-linear function 4d.svg |caption3=Curved surfaces at constant slices of {{math|1=''x''{{sub|4}} = ''f'' (''x''{{sub|1}}, ''x''{{sub|2}}, ''x''{{sub|3}})}}. |footer={{math|(''n'' β 1)}}-dimensional level sets of non-linear functions {{math|''f'' (''x''{{sub|1}}, ''x''{{sub|2}}, β¦, ''x{{sub|n}}''}}) in {{math|(''n'' + 1)}}-dimensional Euclidean space, for {{math|1=''n'' = 1, 2, 3}}.}} In [[mathematics]], a '''level set''' of a [[real-valued function]] {{mvar|f}} of {{mvar|n}} [[Function of several real variables|real variables]] is a [[set (mathematics)|set]] where the function takes on a given [[constant (mathematics)|constant]] value {{mvar|c}}, that is: : <math> L_c(f) = \left\{ (x_1, \ldots, x_n) \mid f(x_1, \ldots, x_n) = c \right\}~. </math> When the number of independent variables is two, a level set is called a '''level curve''', also known as ''[[contour line]]'' or ''isoline''; so a level [[curve]] is the set of all real-valued solutions of an equation in two variables {{math|''x''{{sub|1}}}} and {{math|''x''{{sub|2}}}}. When {{math|1=''n'' = 3}}, a level set is called a '''level surface''' (or ''[[isosurface]]''); so a level [[Surface (mathematics)|surface]] is the set of all real-valued roots of an equation in three variables {{math|''x''{{sub|1}}}}, {{math|''x''{{sub|2}}}} and {{math|''x''{{sub|3}}}}. For higher values of {{mvar|n}}, the level set is a '''level hypersurface''', the set of all real-valued roots of an equation in {{math|''n'' > 3}} variables (a [[higher-dimensional]] [[hypersurface]]). A level set is a special case of a [[fiber (mathematics)|fiber]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)