Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Limit (category theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical concept}} {{More footnotes|date=March 2013}} In [[category theory]], a branch of [[mathematics]], the abstract notion of a '''limit''' captures the essential properties of universal constructions such as [[product (category theory)|products]], [[pullback (category theory)|pullbacks]] and [[inverse limit]]s. The [[duality (category theory)|dual notion]] of a '''colimit''' generalizes constructions such as [[disjoint union]]s, [[direct sum]]s, [[coproduct]]s, [[pushout (category theory)|pushout]]s and [[direct limit]]s. Limits and colimits, like the strongly related notions of [[universal property|universal properties]] and [[adjoint functors]], exist at a high level of abstraction. In order to understand them, it is helpful to first study the specific examples these concepts are meant to generalize.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)