Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Local zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[mathematics]], the '''local zeta function''' {{math|''Z''(''V'', ''s'')}} (sometimes called the '''congruent zeta function''' or the [[Hasse–Weil zeta function]]) is defined as :<math>Z(V, s) = \exp\left(\sum_{k = 1}^\infty \frac{N_k}{k} (q^{-s})^k\right)</math> where {{mvar|V}} is a [[Singular point of an algebraic variety|non-singular]] {{mvar|n}}-dimensional [[projective algebraic variety]] over the field {{math|'''F'''<sub>''q''</sub>}} with {{mvar|q}} elements and {{math|''N''<sub>''k''</sub>}} is the number of points of {{mvar|''V''}} defined over the finite field extension {{math|'''F'''<sub>''q''<sup>''k''</sup></sub>}} of {{math|'''F'''<sub>''q''</sub>}}.<ref>Section V.2 of {{Citation | last=Silverman | first=Joseph H. | author-link=Joseph H. Silverman | title=The arithmetic of elliptic curves | publisher=[[Springer-Verlag]] | location=New York | series=[[Graduate Texts in Mathematics]] | isbn=978-0-387-96203-0 | mr=1329092 | year=1992 | volume=106 }}</ref> Making the variable transformation {{math|''t'' {{=}} ''q''<sup>−''s''</sup>,}} gives :<math> \mathit{Z} (V,t) = \exp \left( \sum_{k=1}^{\infty} N_k \frac{t^k}{k} \right) </math> as the [[formal power series]] in the variable <math>t</math>. Equivalently, the local zeta function is sometimes defined as follows: :<math> (1)\ \ \mathit{Z} (V,0) = 1 \, </math> :<math> (2)\ \ \frac{d}{dt} \log \mathit{Z} (V,t) = \sum_{k=1}^{\infty} N_k t^{k-1}\ .</math> In other words, the local zeta function {{math|''Z''(''V'', ''t'')}} with coefficients in the [[finite field]] {{math|'''F'''<sub>''q''</sub>}} is defined as a function whose [[logarithmic derivative]] generates the number {{math|''N''<sub>''k''</sub>}} of solutions of the equation defining {{mvar|V}} in the degree {{mvar|k}} extension {{math|'''F'''<sub>''q''<sup>''k''</sup></sub>.}} <!--In [[number theory]], a '''local zeta function''' :<math>Z(-t)</math> is a function whose [[logarithmic derivative]] is a [[generating function]] for the number of solutions of a set of equations defined over a [[finite field]] ''F'', in extension fields ''F<sub>k</sub>'' of ''F''. -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)