Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logarithmic integral function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Special function defined by an integral}} {{Redirect|Li(x)|the polylogarithm denoted by Li<sub>''s''</sub>(''z'')|Polylogarithm}} {{Use American English|date = January 2019}} [[File:Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D|thumb|Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D]] In [[mathematics]], the '''logarithmic integral function''' or '''integral logarithm''' li(''x'') is a [[special function]]. It is relevant in problems of [[physics]] and has [[number theory|number theoretic]] significance. In particular, according to the [[prime number theorem]], it is a very good [[approximation]] to the [[prime-counting function]], which is defined as the number of [[prime numbers]] less than or equal to a given value {{mvar|x}}. [[Image:Logarithmic integral function.svg|thumb|right|300px|Logarithmic integral function plot]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)