Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logistic distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Continuous probability distribution}} {{Probability distribution| name =Logistic distribution| type =density| pdf_image =[[File:Logisticpdfunction.svg|320px|Standard logistic PDF]]| cdf_image =[[File:Logistic cdf.svg|320px|Standard logistic CDF]]| parameters =<math>\mu,</math> [[location parameter|location]] ([[real number|real]])<br /><math>s > 0,</math> [[scale parameter|scale]] (real)| support =<math>x \in (-\infty, \infty)</math>| pdf =<math>\frac{e^{-(x-\mu)/s}} {s\left(1+e^{-(x-\mu)/s}\right)^2}</math>| cdf =<math>\frac{1}{1+e^{-(x-\mu)/s}} = \frac{1 + \tanh \frac{x-\mu}{2s}}{2}</math>| quantile =<math>\mu+s \log\left(\frac{p}{1-p}\right)</math>| mean =<math>\mu</math>| median =<math>\mu</math>| mode =<math>\mu</math>| variance =<math>\frac{s^2 \pi^2}{3}</math>| skewness =<math>0</math>| kurtosis =<math>6/5</math>| entropy =<math>\ln s + 2</math>| mgf =<math>e^{\mu t}\Beta(1-st, 1+st)</math><br />for <math>t \in (-1/s,1/s)</math><br />and <math>\Beta</math> is the [[Beta function]]| char =<math>e^{it\mu}\frac{\pi st}{\sinh(\pi st)}</math> | ES =<math>\mu + \frac{sH(p)}{1-p}</math> <br /> where <math>H(p)</math> is the binary entropy function<ref name="norton">{{cite journal |last1=Norton |first1=Matthew |last2=Khokhlov |first2=Valentyn |last3=Uryasev |first3=Stan |year=2019 |title=Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation |journal=Annals of Operations Research |volume=299 |issue=1β2 |pages=1281β1315 |publisher=Springer|doi=10.1007/s10479-019-03373-1 |arxiv=1811.11301 |url=http://uryasev.ams.stonybrook.edu/wp-content/uploads/2019/10/Norton2019_CVaR_bPOE.pdf |access-date=2023-02-27 |url-status=dead |archive-url=https://web.archive.org/web/20230301065519/http://uryasev.ams.stonybrook.edu/wp-content/uploads/2019/10/Norton2019_CVaR_bPOE.pdf |archive-date= Mar 1, 2023 }}</ref> <math>H(p) = -p \ln(p) - (1-p) \ln (1-p)</math> }} In [[probability theory]] and [[statistics]], the '''logistic distribution''' is a [[continuous probability distribution]]. Its [[cumulative distribution function]] is the [[logistic function]], which appears in [[logistic regression]] and [[feedforward neural network]]s. It resembles the [[normal distribution]] in shape but has heavier tails (higher [[kurtosis]]). The logistic distribution is a special case of the [[Tukey lambda distribution]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)