Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lyapunov function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Concept in the analysis of dynamical systems}}{{No footnotes|date=October 2023}} In the theory of [[ordinary differential equations]] (ODEs), '''Lyapunov functions''', named after [[Aleksandr Lyapunov]], are scalar functions that may be used to prove the stability of an [[equilibrium point|equilibrium]] of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to [[stability theory]] of [[dynamical system]]s and [[control theory]]. A similar concept appears in the theory of general state-space [[Markov chain]]s usually under the name Foster–Lyapunov functions. For certain classes of ODEs, the existence of Lyapunov functions is a necessary and sufficient condition for stability. Whereas there is no general technique for constructing Lyapunov functions for ODEs, in many specific cases the construction of Lyapunov functions is known. For instance, [[quadratic function|quadratic]] functions suffice for systems with one state, the solution of a particular [[linear matrix inequality]] provides Lyapunov functions for linear systems, and [[Conservation law (physics)|conservation law]]s can often be used to construct Lyapunov functions for [[physical system]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)