Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Methane clathrate
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Methane-water lattice compound}} {{Redirect|Fire ice|the book by Clive Cussler|Fire Ice}} [[Image:Burning hydrate inlay US Office Naval Research.jpg|right|frame|"Burning ice". Methane, released by heating, burns; water drips.<br> Inset: clathrate structure (University of Göttingen, GZG. Abt. Kristallographie).<br> Source: [[United States Geological Survey]].]] '''Methane clathrate''' (CH<sub>4</sub>·5.75H<sub>2</sub>O) or (4CH<sub>4</sub>·23H<sub>2</sub>O), also called '''methane hydrate''', '''hydromethane''', '''methane ice''', '''fire ice''', '''natural gas hydrate''', or '''gas hydrate''', is a solid [[clathrate compound]] (more specifically, a [[clathrate hydrate]]) in which a large amount of [[methane]] is trapped within a [[crystal]] structure of water, forming a solid similar to [[ice]].<ref>{{citation |publisher=U.S. Geological Survey |url=https://woodshole.er.usgs.gov/project-pages/hydrates/what.html |date=31 August 2009 |access-date=28 December 2014 |title=Gas Hydrate: What is it? |url-status=dead |archive-url=https://web.archive.org/web/20120614141539/http://woodshole.er.usgs.gov/project-pages/hydrates/what.html |archive-date=June 14, 2012}}</ref><ref name="Hassan 12305–12314">{{Cite journal |last=Hassan |first=Hussein |last2=Romanos |first2=Jimmy |date=2023-08-09 |title=Effects of Sea Salts on the Phase Behavior and Synthesis of Methane Hydrates + THF: An Experimental and Theoretical Study |url=https://pubs.acs.org/doi/10.1021/acs.iecr.3c00351 |journal=Industrial & Engineering Chemistry Research |language=en |volume=62 |issue=31 |pages=12305–12314 |doi=10.1021/acs.iecr.3c00351 |issn=0888-5885|url-access=subscription }}</ref><ref>{{Cite journal |title=Coupled Numerical Modeling of Gas Hydrate-BearingSediments: From Laboratory to Field-Scale Analyses |last1=Sánchez |first1=M. |last2=Santamarina |first2=C. |last3=Teymouri |first3=M. |last4=Gai |first4=X. |journal=Journal of Geophysical Research: Solid Earth |volume=123 |issue=12 |pages=10,326-10,348 |year=2018 |doi=10.1029/2018JB015966 |hdl=10754/630330 |url=https://repository.kaust.edu.sa/bitstream/10754/630330/1/S-nchez_et_al-2018-Journal_of_Geophysical_Research__Solid_Earth.pdf |bibcode=2018JGRB..12310326S|s2cid=134394736 |hdl-access=free }}</ref><ref>{{Cite journal |title=A pseudo-kinetic model to simulate phase changes in gas hydrate bearing sediments |last1=Teymouri |first1=M. |last2=Sánchez |first2=M. |last3=Santamarina |first3=C. |journal=Marine and Petroleum Geology |pages=104519 |year=2020 |volume=120 |doi=10.1016/j.marpetgeo.2020.104519 |bibcode=2020MarPG.12004519T |doi-access=free |hdl=10754/664452 |hdl-access=free }}</ref><ref>{{cite journal |last1=Chong |first1=Z. R. |last2=Yang |first2=S. H. B. |last3=Babu |first3=P. |last4=Linga |first4=P. |last5=Li |first5=X.-S. |date=2016 |title=Review of natural gas hydrates as an energy resource: Prospects and challenges |journal=Applied Energy |volume=162 |pages=1633–1652 |doi=10.1016/j.apenergy.2014.12.061}}</ref><ref>{{Cite journal|doi=10.1039/C8CS00989A|title=Gas hydrates in sustainable chemistry|year=2020|last1=Hassanpouryouzband|first1=Aliakbar|last2 = Joonaki|first2 = Edris|last3 = Vasheghani Farahani|first3 = Mehrdad|last4 = Takeya|first4 = Satoshi|last5 = Ruppel|first5 = Carolyn|last6 = Yang|first6 = Jinhai|last7 = J. English|first7 = Niall|last8 = M. Schicks|first8 = Judith|last9 = Edlmann|first9 = Katriona|last10 = Mehrabian|first10 = Hadi|last11 = M. Aman|first11 = Zachary|last12 = Tohidi|first12 = Bahman|journal=Chemical Society Reviews|volume=49|issue=15|pages=5225–5309|pmid=32567615|s2cid=219971360|doi-access = free|hdl = 1912/26136|hdl-access = free}}</ref> Originally thought to occur only in the outer regions of the [[Solar System]], where temperatures are low and water ice is common, significant deposits of methane clathrate have been found under [[sediment]]s on the [[ocean]] floors of the [[Earth]] (around 1100{{nbsp}}m below the sea level).<ref>{{Cite journal |title=Old Gas, New Gas |author=Roald Hoffmann |journal=[[American Scientist]] |volume=94 |issue=1 |pages=16–18 |year=2006 |doi=10.1511/2006.57.16 |url=https://www.americanscientist.org/article/old-gas-new-gas|url-access=subscription }}</ref> Methane hydrate is formed when hydrogen-bonded water and methane gas come into contact at high pressures and low temperatures in oceans. Methane clathrates are common constituents of the shallow marine [[geosphere]] and they occur in deep [[Sedimentary rock|sedimentary]] structures and form [[outcrop]]s on the ocean floor. Methane hydrates are believed to form by the precipitation or crystallisation of methane migrating from deep along [[Fault (geology)|geological faults]]. Precipitation occurs when the methane comes in contact with water within the sea bed subject to temperature and pressure. In 2008, research on Antarctic [[Vostok Station]] and [[European Project for Ice Coring in Antarctica#Concordia Station at Dome C|EPICA Dome C]] ice cores revealed that methane clathrates were also present in deep [[Antarctica|Antarctic]] [[ice core]]s and record a history of [[atmospheric methane]] concentrations, dating to 800,000 years ago.<ref>{{Cite journal |title=High resolution carbon dioxide concentration record 650,000–800,000 years before present |journal=[[Nature (journal)|Nature]] |volume=453 |pages=379–382 |year=2008 |doi=10.1038/nature06949 |pmid=18480821 |last1=Lüthi |first1=D |last2=Le Floch |first2=M |last3=Bereiter |first3=B |last4=Blunier |first4=T |last5=Barnola |first5=JM |last6=Siegenthaler |first6=U |last7=Raynaud |first7=D |last8=Jouzel |first8=J |last9=Fischer |first9=H |display-authors=8 |issue=7193 |bibcode=2008Natur.453..379L |s2cid=1382081 |url=https://epic.awi.de/id/eprint/18281/1/Lth2008a.pdf|doi-access=free }}</ref> The ice-core methane clathrate record is a primary source of data for [[global warming]] research, along with oxygen and carbon dioxide. Methane clathrates used to be considered as a potential source of [[abrupt climate change]], following the [[clathrate gun hypothesis]]. In this scenario, heating causes catastrophic melting and breakdown of primarily undersea hydrates, leading to a massive release of methane and accelerating warming. Current research shows that hydrates react very slowly to warming, and that it's very difficult for methane to reach the atmosphere after dissociation.<ref name="Wallmann2018">{{Cite journal|journal=Nature Communications|year=2018|author=Wallmann|display-authors=et al |title=Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming |volume=9 |issue=1 |pages=83 |doi=10.1038/s41467-017-02550-9 |pmid=29311564 |pmc=5758787 |bibcode=2018NatCo...9...83W}}</ref><ref>{{cite journal |last1=Mau |first1=S. |last2=Römer |first2=M. |last3=Torres |first3=M. E. |last4=Bussmann |first4=I. |last5=Pape |first5=T. |last6=Damm |first6=E. |last7=Geprägs |first7=P. |last8=Wintersteller |first8=P. |last9=Hsu |first9=C.-W. |last10=Loher |first10=M. |last11=Bohrmann |first11=G. |date=23 February 2017 |title=Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden |journal=Scientific Reports |volume=7 |page=42997 |doi=10.1038/srep42997 |pmid=28230189 |pmc=5322355 |bibcode=2017NatSR...742997M |s2cid=23568012 |doi-access=free }}</ref> Some active seeps instead act as a minor [[carbon sink]], because with the majority of methane dissolved underwater and encouraging [[methanotroph]] communities, the area around the seep also becomes more suitable for [[phytoplankton]].<ref>{{cite journal |last1=Pohlman |first1=John W. |last2=Greinert |first2=Jens |last3=Ruppel |first3=Carolyn |last4=Silyakova |first4=Anna |last5=Vielstädte |first5=Lisa |last6=Casso |first6=Michael |last7=Mienert |first7=Jürgen |last8=Bünz |first8=Stefan |date=1 February 2020 |title=Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane |journal=Proceedings of the National Academy of Sciences |volume=114 |issue=21 |pages=5355–5360 |doi=10.1073/pnas.1618926114 |pmid=28484018 |pmc=5448205 |doi-access=free }}</ref> As the result, methane hydrates are no longer considered one of the [[tipping points in the climate system]], and according to the [[IPCC Sixth Assessment Report]], no "detectable" impact on the global temperatures will occur in this century through this mechanism.<ref name="IPCC AR6 WG1 Ch.5">{{Cite journal |last1=Fox-Kemper |first1=B. |last2=Hewitt |first2=H.T.|author2-link=Helene Hewitt |last3=Xiao |first3=C. |last4=Aðalgeirsdóttir |first4=G. |last5=Drijfhout |first5=S.S. |last6=Edwards |first6=T.L. |last7=Golledge |first7=N.R. |last8=Hemer |first8=M. |last9=Kopp |first9=R.E. |last10=Krinner |first10=G. |last11=Mix |first11=A. |date=2021 |editor-last=Masson-Delmotte |editor-first=V. |editor2-last=Zhai |editor2-first=P. |editor3-last=Pirani |editor3-first=A. |editor4-last=Connors |editor4-first=S.L. |editor5-last=Péan |editor5-first=C. |editor6-last=Berger |editor6-first=S. |editor7-last=Caud |editor7-first=N. |editor8-last=Chen |editor8-first=Y. |editor9-last=Goldfarb |editor9-first=L. |title=Chapter 5: Global Carbon and other Biogeochemical Cycles and Feedbacks |journal=Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change |url=https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf |publisher=Cambridge University Press, Cambridge, UK and New York, NY, USA |page=5 |doi=10.1017/9781009157896.011}}</ref> Over several millennia, a more substantial {{convert|0.4-0.5|C-change|F-change}} response may still be seen.<ref name="Schellnhuber2018">{{Cite journal |last1=Schellnhuber |first1=Hans Joachim |last2=Winkelmann |first2=Ricarda |last3=Scheffer |first3=Marten |last4=Lade |first4=Steven J. |last5=Fetzer |first5=Ingo |last6=Donges |first6=Jonathan F. |last7=Crucifix |first7=Michel |last8=Cornell |first8=Sarah E. |last9=Barnosky |first9=Anthony D. |author-link9=Anthony David Barnosky |date=2018 |title=Trajectories of the Earth System in the Anthropocene |journal=[[Proceedings of the National Academy of Sciences]] |volume=115 |issue=33 |pages=8252–8259 |bibcode=2018PNAS..115.8252S |doi=10.1073/pnas.1810141115 |issn=0027-8424 |pmc=6099852 |pmid=30082409 |doi-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)