Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Module homomorphism
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Linear map over a ring}}In [[Abstract algebra|algebra]], a '''module homomorphism''' is a [[function (mathematics)|function]] between [[module (mathematics)|module]]s that preserves the module structures. Explicitly, if ''M'' and ''N'' are left modules over a [[Ring (mathematics)|ring]] ''R'', then a function <math>f: M \to N</math> is called an ''R''-''module homomorphism'' or an ''R''-''linear map'' if for any ''x'', ''y'' in ''M'' and ''r'' in ''R'', :<math>f(x + y) = f(x) + f(y),</math> :<math>f(rx) = rf(x).</math> In other words, ''f'' is a [[group homomorphism]] (for the underlying additive groups) that commutes with [[scalar multiplication]]. If ''M'', ''N'' are right ''R''-modules, then the second condition is replaced with :<math>f(xr) = f(x)r.</math> The [[preimage]] of the zero element under ''f'' is called the [[kernel (algebra)|kernel]] of ''f''. The [[Set (mathematics)|set]] of all module homomorphisms from ''M'' to ''N'' is denoted by <math>\operatorname{Hom}_R(M, N)</math>. It is an [[abelian group]] (under pointwise addition) but is not necessarily a module unless ''R'' is [[Commutative ring|commutative]]. The [[Function composition|composition]] of module homomorphisms is again a module homomorphism, and the identity map on a module is a module homomorphism. Thus, all the (say left) modules together with all the module homomorphisms between them form the [[category of modules]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)