Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Moment-generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Concept in probability theory and statistics}} In [[probability theory]] and [[statistics]], the '''moment-generating function''' of a real-valued [[random variable]] is an alternative specification of its [[probability distribution]]. Thus, it provides the basis of an alternative route to analytical results compared with working directly with [[probability density function]]s or [[cumulative distribution function]]s. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables. However, not all random variables have moment-generating functions. As its name implies, the moment-[[generating function]] can be used to compute a distribution’s [[Moment (mathematics)|moments]]: the {{mvar|n}}-th moment about 0 is the {{mvar|n}}-th derivative of the moment-generating function, evaluated at 0. In addition to univariate real-valued distributions, moment-generating functions can also be defined for vector- or matrix-valued random variables, and can even be extended to more general cases. The moment-generating function of a real-valued distribution does not always exist, unlike the [[Characteristic function (probability theory)|characteristic function]]. There are relations between the behavior of the moment-generating function of a distribution and properties of the distribution, such as the existence of moments.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)