Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Monte Carlo method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Probabilistic problem-solving algorithm}} {{distinguish|Monte Carlo algorithm}} {{Use American English|date=February 2024}} {{Use mdy dates|date=February 2024}} [[File:Approximation d'une distribution normale.gif|thumb|300px|The approximation of a [[normal distribution]] with a Monte Carlo method]] '''Monte Carlo methods''', or '''Monte Carlo experiments''', are a broad class of [[computation]]al [[algorithm]]s that rely on [[Resampling (statistics)|repeated]] [[random sampling]] to obtain numerical results. The underlying concept is to use [[randomness]] to solve problems that might be [[deterministic system|deterministic]] in principle. The name comes from the [[Monte Carlo Casino]] in Monaco, where the primary developer of the method, mathematician [[Stanisław Ulam]], was inspired by his uncle's gambling habits. Monte Carlo methods are mainly used in three distinct problem classes: optimization, numerical integration, and generating draws from a probability distribution. They can also be used to model phenomena with significant uncertainty in inputs, such as calculating the risk of a nuclear power plant failure. Monte Carlo methods are often implemented using computer simulations, and they can provide approximate solutions to problems that are otherwise intractable or too complex to analyze mathematically. Monte Carlo methods are widely used in various fields of science, engineering, and mathematics, such as physics, chemistry, biology, statistics, artificial intelligence, finance, and cryptography. They have also been applied to social sciences, such as sociology, psychology, and political science. Monte Carlo methods have been recognized as one of the most important and influential ideas of the 20th century, and they have enabled many scientific and technological breakthroughs. Monte Carlo methods also have some limitations and challenges, such as the trade-off between accuracy and computational cost, the [[curse of dimensionality]], the reliability of random number generators, and the verification and validation of the results.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)