Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Probability distribution}} {{Redirect|Bell curve}} {{More citations needed|date=December 2024}} {{Use mdy dates|date=August 2012}} {{Infobox probability distribution | name = Normal distribution | type = density | pdf_image = [[Image:Normal Distribution PDF.svg|400px|class=skin-invert-image]] | pdf_caption = The red curve is the [[#Standard normal distribution|''standard normal distribution'']]. | cdf_image = [[Image:Normal Distribution CDF.svg|400px|class=skin-invert-image]] | cdf_caption = | notation = <math>\mathcal{N}(\mu,\sigma^2)</math> | parameters = <math>\mu\in\R</math> = [[mean]] ([[location parameter|location]])<br /><math>\sigma^2\in\R_{>0}</math> = [[variance]] (squared [[scale parameter|scale]]) | support = <math>x\in\R</math> | pdf = <math>\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \mu)^2}{2\sigma^2}}</math> | cdf = <math>\Phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{2}\left[1 + \operatorname{erf}\left( \frac{x-\mu}{\sigma\sqrt{2}}\right)\right]</math> | quantile = <math>\mu+\sigma\sqrt{2} \operatorname{erf}^{-1}(2p-1)</math> | mean = <math>\mu</math> | median = <math>\mu</math> | mode = <math>\mu</math> | variance = <math>\sigma^2</math> | mad = <math>\sigma\sqrt{2}\,\operatorname{erf}^{-1}(1/2)</math> | aad = <math display="inline">\sigma\sqrt{2/\pi}</math> | skewness = <math>0</math> | kurtosis = <math>0</math> <!-- DO NOT REPLACE THIS WITH THE OLD-STYLE KURTOSIS WHICH IS 3. --> | entropy = <math display="inline">\tfrac{1}{2} \log(2\pi e \sigma^2)</math> | mgf = <math>\exp(\mu t + \sigma^2 t^2 / 2)</math> | char = <math>\exp(i \mu t - \sigma^2 t^2 / 2)</math> | fisher = <math>\mathcal{I}(\mu,\sigma) =\begin {pmatrix} 1/\sigma^2 & 0 \\ 0 & 2/\sigma^2\end{pmatrix}</math> <math>\mathcal{I}(\mu,\sigma^2) =\begin {pmatrix} 1/\sigma^2 & 0 \\ 0 & 1/(2\sigma^4)\end{pmatrix}</math> | KLDiv = <math>{ 1 \over 2 } \left\{ \left( \frac{\sigma_0}{\sigma_1} \right)^2 + \frac{(\mu_1 - \mu_0)^2}{\sigma_1^2} - 1 + \ln {\sigma_1^2 \over \sigma_0^2} \right\}</math> | ES = <math>\mu + \sigma \frac{\frac{1}{\sqrt{2\pi}} e^{\frac{-\left(q_p\left(\frac{X-\mu}{\sigma}\right)\right)^2}{2}}}{1-p}</math><ref name="Norton-2019">{{cite journal |last1=Norton |first1=Matthew |last2=Khokhlov |first2=Valentyn |last3=Uryasev |first3=Stan |year=2019 |title=Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation |journal=Annals of Operations Research |volume=299 |issue=1–2 |pages=1281–1315 |publisher=Springer |doi=10.1007/s10479-019-03373-1 |arxiv=1811.11301 |s2cid=254231768 |url=http://uryasev.ams.stonybrook.edu/wp-content/uploads/2019/10/Norton2019_CVaR_bPOE.pdf |access-date=2023-02-27 |archive-date=March 31, 2023 |archive-url=https://web.archive.org/web/20230331230821/http://uryasev.ams.stonybrook.edu/wp-content/uploads/2019/10/Norton2019_CVaR_bPOE.pdf |url-status=dead }}</ref> }} {{Probability fundamentals}} In [[probability theory]] and [[statistics]], a '''normal distribution''' or '''Gaussian distribution''' is a type of [[continuous probability distribution]] for a [[real number|real-valued]] [[random variable]]. The general form of its [[probability density function]] is<ref name="The Joy of Finite Mathematics">{{Cite book |last=Tsokos |first=Chris |url=https://linkinghub.elsevier.com/retrieve/pii/B9780128029671000073 |title=The Joy of Finite Mathematics |last2=Wooten |first2=Rebecca |date=2016-01-01 |publisher=Academic Press |isbn=978-0-12-802967-1 |editor-last=Tsokos |editor-first=Chris |location=Boston |pages=231–263 |doi=10.1016/b978-0-12-802967-1.00007-3 |editor-last2=Wooten |editor-first2=Rebecca}}</ref><ref name="Mathematics for Physical Science and Engineering">{{Cite book |last=Harris |first=Frank E. |url=https://linkinghub.elsevier.com/retrieve/pii/B9780128010006000183 |title=Mathematics for Physical Science and Engineering |date=2014-01-01 |publisher=Academic Press |isbn=978-0-12-801000-6 |editor-last=Harris |editor-first=Frank E. |location=Boston |pages=663–709 |doi=10.1016/b978-0-12-801000-6.00018-3}}</ref><ref>{{harvtxt|Hoel|1947|loc=[https://archive.org/details/in.ernet.dli.2015.263186/page/n39/mode/2up?q=%22normal+distribution%22 p. 31]}} and {{harvtxt|Mood|1950|loc=[https://archive.org/details/introductiontoth0000alex/page/108/mode/2up?q=%22normal+distribution%22 p. 109]}} give this definition with slightly different notation.</ref> <math display=block> f(x) = \frac{1}{\sqrt{2\pi\sigma^2} } e^{-\frac{(x-\mu)^2}{2\sigma^2}}\,. </math> The parameter {{tmath|\mu}} is the [[Mean#Mean of a probability distribution|mean]] or [[expected value|expectation]] of the distribution (and also its [[median]] and [[mode (statistics)|mode]]), while the parameter <math display=inline>\sigma^2</math> is the [[variance]]. The [[standard deviation]] of the distribution is {{tmath|\sigma}} (sigma). A random variable with a Gaussian distribution is said to be '''normally distributed''', and is called a '''normal deviate'''. Normal distributions are important in [[statistics]] and are often used in the [[natural science|natural]] and [[social science]]s to represent real-valued [[random variable]]s whose distributions are not known.<ref>[http://www.encyclopedia.com/topic/Normal_Distribution.aspx#3 ''Normal Distribution''], Gale Encyclopedia of Psychology</ref><ref>{{harvtxt |Casella |Berger |2001 |p=102 }}</ref> Their importance is partly due to the [[central limit theorem]]. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution [[convergence in distribution|converges]] to a normal distribution as the number of samples increases. Therefore, physical quantities that are expected to be the sum of many independent processes, such as [[measurement error]]s, often have distributions that are nearly normal.<ref>Lyon, A. (2014). [https://aidanlyon.com/normal_distributions.pdf Why are Normal Distributions Normal?], The British Journal for the Philosophy of Science.</ref> Moreover, Gaussian distributions have some unique properties that are valuable in analytic studies. For instance, any [[linear combination]] of a fixed collection of independent normal deviates is a normal deviate. Many results and methods, such as [[propagation of uncertainty]] and [[least squares]]<ref>{{Cite book |last1=Jorge |first1=Nocedal |title=Numerical Optimization |last2=Stephan |first2=J. Wright |publisher=Springer |year=2006 |isbn=978-0387-30303-1 |edition=2nd |pages=249}}</ref> parameter fitting, can be derived analytically in explicit form when the relevant variables are normally distributed. A normal distribution is sometimes informally called a '''bell curve'''.<ref name="www.mathsisfun.com">{{Cite web|title=Normal Distribution|url=https://www.mathsisfun.com/data/standard-normal-distribution.html|access-date=2020-08-15|website=www.mathsisfun.com}}</ref><ref>{{cite web |title=bell curve |website=Merriam-Webster.com Dictionary |url=https://www.merriam-webster.com/dictionary/bell%20curve |access-date=25 May 2025}}</ref> However, many other distributions are [[Bell-shaped function|bell-shaped]] (such as the [[Cauchy distribution|Cauchy]], [[Student's t-distribution|Student's ''t'']], and [[logistic distribution|logistic]] distributions). (For other names, see ''[[#Naming|Naming]]''.) The [[univariate distribution|univariate probability distribution]] is generalized for [[Vector (mathematics and physics)|vectors]] in the [[multivariate normal distribution]] and for matrices in the [[matrix normal distribution]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)