Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Optical coherence tomography
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Imaging technique}} {{Technical|date=April 2020}} [[File:Optical coherence tomography of human retina.gif|thumb|328x328px|A high-resolution spectral-domain OCT scan (3Γ3 mm) of a dry age-related macular degeneration eye showing geographic atrophy and drusen in macula on both cross-sectional and en face fly-through.]] '''Optical coherence tomography''' ('''OCT''') is a high-resolution imaging technique with most of its applications in medicine and biology. OCT uses coherent near-infrared light to obtain micrometer-level depth resolved images of biological tissue or other [[scattering]] media. It uses [[interferometry]] techniques to detect the amplitude and time-of-flight of reflected light. OCT uses transverse sample scanning of the light beam to obtain two- and three-dimensional images. Short-coherence-length light can be obtained using a [[superluminescent diode]] (SLD) with a broad [[spectral bandwidth]] or a broadly tunable laser with narrow [[linewidth]]. The first demonstration of OCT imaging (in vitro) was published by a team from MIT and Harvard Medical School in a 1991 article in the journal ''[[Science (journal)|Science]]''.<ref name="Huang_1991">{{cite journal | vauthors = Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA | display-authors = 6 | title = Optical coherence tomography | journal = [[Science (journal)|Science]] | volume = 254 | issue = 5035 | pages = 1178β1181 | date = November 1991 | pmid = 1957169 | pmc = 4638169 | doi = 10.1126/science.1957169 | bibcode = 1991Sci...254.1178H }}</ref> The article introduced the term "OCT" to credit its derivation from optical coherence-domain [[reflectometry]], in which the axial resolution is based on [[temporal coherence]].<ref>{{cite journal | vauthors = Youngquist RC, Carr S, Davies DE | title = Optical coherence-domain reflectometry: a new optical evaluation technique | journal = Optics Letters | volume = 12 | issue = 3 | pages = 158β160 | date = March 1987 | pmid = 19738824 | doi = 10.1364/ol.12.000158 | bibcode = 1987OptL...12..158Y }}</ref> The first demonstrations of in vivo OCT imaging quickly followed.<ref>{{Cite journal | vauthors = Izatt JA, Hee MR, Huang D, Fujimoto JG, Swanson EA, Lin CP, Shuman JS, Puliafito CA | veditors = Parel JM, Ren Q |date=1993-06-24 |title=Ophthalmic diagnostics using optical coherence tomography |url=https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1877/0000/Ophthalmic-diagnostics-using-optical-coherence-tomography/10.1117/12.147520.full |journal=Ophthalmic Technologies III |publisher=SPIE |volume=1877 |pages=136β144 |doi=10.1117/12.147520| bibcode = 1993SPIE.1877..136I |s2cid=121094027 |url-access=subscription }}</ref><ref>{{cite journal | vauthors = Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Puliafito CA, Fujimoto JG | display-authors = 6 | title = In vivo retinal imaging by optical coherence tomography | journal = Optics Letters | volume = 18 | issue = 21 | pages = 1864β1866 | date = November 1993 | pmid = 19829430 | doi = 10.1364/ol.18.001864 | bibcode = 1993OptL...18.1864S }}</ref><ref>{{cite journal | vauthors = Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H | title = In vivo optical coherence tomography | journal = American Journal of Ophthalmology | volume = 116 | issue = 1 | pages = 113β114 | date = July 1993 | pmid = 8328536 | doi = 10.1016/s0002-9394(14)71762-3 }}</ref> The first US patents on OCT by the MIT/Harvard group described a [[time-domain]] OCT (TD-OCT) system.<ref name="mw_1994">{{Cite patent | country = US | number = 5321501A|title=Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample|gdate=1994-06-14| inventor = Swanson EA, Huang D, Fujimoto JG, Puliafito CA |url=https://patents.google.com/patent/US5321501A/en}}</ref><ref>{{Cite patent | country = US | number = 5459570A|title=Method and apparatus for performing optical measurements|gdate=1995-10-17| inventor = Swanson EA, Huang D, Fujimoto JG, Puliafito CA |url=https://patents.google.com/patent/US5459570/en}}</ref> These patents were licensed by Zeiss and formed the basis of the first generations of OCT products until 2006. In the decade preceding the invention of OCT, interferometry with short-coherence-length light had been investigated for a variety of applications.<ref name="Eickhoff_1981">{{Cite journal | vauthors = Eickhoff W, Ulrich R |date= November 1981 |title=Optical frequency domain reflectometry in single-mode fiber |url=https://ui.adsabs.harvard.edu/link_gateway/1981ApPhL..39..693E/doi:10.1063/1.92872 |journal=Applied Physics Letters |volume=39 |issue=9 |pages=693β695 |doi=10.1063/1.92872 |bibcode= 1981ApPhL..39..693E |issn=0003-6951}}</ref><ref>{{Cite journal | vauthors = Gillard CW, Buholz NE |title=Progress In Absolute Distance Interferometry |url=https://www.spiedigitallibrary.org/journals/optical-engineering/volume-22/issue-3/223348/Progress-In-Absolute-Distance-Interferometry/10.1117/12.7973117.full |journal=Optical Engineering |date=1983 |volume=22 |issue=3 |pages=348β353 |doi=10.1117/12.7973117 |bibcode=1983OptEn..22..348G |issn=0091-3286|url-access=subscription }}</ref><ref>{{Cite book | vauthors = Fercher AF, Roth E | chapter = Ophthalmic Laser Interferometry | veditors = Mueller GJ |date=1986-09-15 |title=Optical Instrumentation for Biomedical Laser Applications |chapter-url=https://spie.org/Publications/Proceedings/Paper/10.1117/12.938523 |journal=SPIE Proceedings |volume=0658 |page=48 |publisher=SPIE |doi=10.1117/12.938523| bibcode = 1986SPIE..658...48F |s2cid=122883903 }}</ref><ref>{{cite journal | vauthors = Youngquist RC, Carr S, Davies DE | title = Optical coherence-domain reflectometry: a new optical evaluation technique | language = EN | journal = Optics Letters | volume = 12 | issue = 3 | pages = 158β160 | date = March 1987 | pmid = 19738824 | doi = 10.1364/OL.12.000158 | bibcode = 1987OptL...12..158Y }}</ref><ref>{{cite journal | vauthors = Takada K, Yokohama I, Chida K, Noda J | title = New measurement system for fault location in optical waveguide devices based on an interferometric technique | journal = Applied Optics | volume = 26 | issue = 9 | pages = 1603β1606 | date = May 1987 | pmid = 20454375 | doi = 10.1364/AO.26.001603 | bibcode = 1987ApOpt..26.1603T }}</ref><ref name="Kachelmyer_1989">{{Cite journal | vauthors = Kachelmyer AL | veditors = Becherer RJ |date=1989-02-18 |title=Range-Doppler Imaging Waveforms And Receiver Design |url=https://www.spiedigitallibrary.org/conference-proceedings-of-spie/0999/0000/Range-Doppler-Imaging-Waveforms-And-Receiver-Design/10.1117/12.960231.full |journal=Laser Radar III |publisher=SPIE |volume=0999 |pages=138β161 |doi=10.1117/12.960231| bibcode = 1989SPIE..999..138K |s2cid=110631959 |url-access=subscription }}</ref><ref>{{cite journal | vauthors = Fercher AF, Mengedoht K, Werner W | title = Eye-length measurement by interferometry with partially coherent light | language = EN | journal = Optics Letters | volume = 13 | issue = 3 | pages = 186β188 | date = March 1988 | pmid = 19742022 | doi = 10.1364/OL.13.000186 | bibcode = 1988OptL...13..186F }}</ref><ref>{{Cite journal | vauthors = Gilgen HH, Novak RP, Salathe RP, Hodel W, Beaud P |title=Submillimeter optical reflectometry |url=https://ieeexplore.ieee.org/document/32387 |journal=Journal of Lightwave Technology |date=1989 |volume=7 |issue=8 |pages=1225β1233 |doi=10.1109/50.32387 |bibcode=1989JLwT....7.1225G |issn=1558-2213|url-access=subscription }}</ref><ref>{{cite journal | vauthors = Huang D, Wang J, Lin CP, Puliafito CA, Fujimoto JG | title = Micron-resolution ranging of cornea anterior chamber by optical reflectometry | journal = Lasers in Surgery and Medicine | volume = 11 | issue = 5 | pages = 419β425 | date = 1991 | pmid = 1816476 | doi = 10.1002/lsm.1900110506 | s2cid = 19888483 }}</ref><ref>{{cite journal | vauthors = Hitzenberger CK | title = Optical measurement of the axial eye length by laser Doppler interferometry | journal = Investigative Ophthalmology & Visual Science | volume = 32 | issue = 3 | pages = 616β624 | date = March 1991 | pmid = 2001935 | url = https://pubmed.ncbi.nlm.nih.gov/2001935/ }}</ref><ref name="Fercher_1990">{{cite conference |date=12β16 August 1990 |title=Ophthalmic interferometry |location=Garmisch-Partenkirchen, Germany |pages=221β228 |isbn=0-444-89860-3 |vauthors=Fercher AF |book-title=Proceedings of the International Conference on Optics in Life Sciences |veditors=von Bally G, Khanna S}}</ref><ref name="Naohiro Tanno_1991">{{cite conference |author1=Shinji Chiba |author2=Naohiro Tanno |year=1991 |title=Backscattering Optical Heterodyne Tomography |conference=14th Laser Sensing Symposium |language=ja}}</ref>{{Excessive citations inline|date=February 2025}} The potential to use interferometry for imaging was proposed,<ref name="Naohiro Tanno_1991" /> and measurement of [[retina]]l elevation profile and thickness had been demonstrated.<ref name="Fercher_1990" /> The initial commercial clinical OCT systems were based on point-scanning TD-OCT technology, which primarily produced [[Cross section (geometry)|cross-sectional]] images due to the speed limitation (tens to thousands of axial scans per second). Fourier-domain OCT became available clinically 2006, enabling much greater image acquisition rate (tens of thousands to hundreds of thousands axial scans per second) without sacrificing signal strength. The higher speed allowed for three-dimensional imaging, which can be visualized in both en face and cross-sectional views. Novel contrasts such as [[angiography]], [[elastography]], and optoretinography also became possible by detecting signal change over time. Over the past three decades, the speed of commercial clinical OCT systems has increased more than 1000-fold, doubling every three years and rivaling [[Moore's law]] of computer chip performance. Development of parallel image acquisition approaches such as line-field and full-field technology may allow the performance improvement trend to continue. OCT is most widely used in [[ophthalmology]], in which it has transformed the diagnosis and monitoring of retinal diseases, [[optic nerve]] diseases, and [[cornea]]l diseases. It has greatly improved the management of the top three causes of blindness β [[macular degeneration]], [[diabetic retinopathy]], and [[glaucoma]] β thereby preventing vision loss in many patients. By 2016 OCT was estimated to be used in more than 30 million imaging procedures per year worldwide.<ref name="Fujimoto_2016">{{cite journal | vauthors = Fujimoto J, Swanson E | title = The Development, Commercialization, and Impact of Optical Coherence Tomography | journal = Investigative Ophthalmology & Visual Science | volume = 57 | issue = 9 | pages = OCT1βOCT13 | date = July 2016 | pmid = 27409459 | pmc = 4968928 | doi = 10.1167/iovs.16-19963 }}</ref> Intravascular OCT imaging is used in the intravascular evaluation of [[Coronary arteries|coronary artery]] plaques and to guide [[stent]] placement.<ref>{{Cite journal |last1=Tearney |first1=Guillermo J. |last2=Regar |first2=Evelyn |last3=Akasaka |first3=Takashi |last4=Adriaenssens |first4=Tom |last5=Barlis |first5=Peter |last6=Bezerra |first6=Hiram G. |last7=Bouma |first7=Brett |last8=Bruining |first8=Nico |last9=Cho |first9=Jin-man |last10=Chowdhary |first10=Saqib |last11=Costa |first11=Marco A. |last12=de Silva |first12=Ranil |last13=Dijkstra |first13=Jouke |last14=Di Mario |first14=Carlo |last15=Dudeck |first15=Darius |date=March 2012 |title=Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies |url=https://linkinghub.elsevier.com/retrieve/pii/S0735109712001027 |journal=Journal of the American College of Cardiology |language=en |volume=59 |issue=12 |pages=1058β1072 |doi=10.1016/j.jacc.2011.09.079|pmid=22421299 }}</ref> Beyond ophthalmology and cardiology, applications are also developing in other medical specialties such as [[dermatology]], [[gastroenterology]],<ref>{{Cite journal |last1=Ughi |first1=Giovanni J. |last2=Gora |first2=Michalina J. |last3=Swager |first3=Anne-FrΓ© |last4=Soomro |first4=Amna |last5=Grant |first5=Catriona |last6=Tiernan |first6=Aubrey |last7=Rosenberg |first7=Mireille |last8=Sauk |first8=Jenny S. |last9=Nishioka |first9=Norman S. |last10=Tearney |first10=Guillermo J. |date=2016-02-01 |title=Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy |url=https://opg.optica.org/abstract.cfm?URI=boe-7-2-409 |journal=Biomedical Optics Express |language=en |volume=7 |issue=2 |pages=409β419 |doi=10.1364/BOE.7.000409 |issn=2156-7085 |pmc=4771459 |pmid=26977350}}</ref> [[neurology]] and neurovascular imaging,<ref>{{Cite journal |last1=Ughi |first1=Giovanni J. |last2=Marosfoi |first2=Miklos G. |last3=King |first3=Robert M. |last4=Caroff |first4=Jildaz |last5=Peterson |first5=Lindsy M. |last6=Duncan |first6=Benjamin H. |last7=Langan |first7=Erin T. |last8=Collins |first8=Amanda |last9=Leporati |first9=Anita |last10=Rousselle |first10=Serge |last11=Lopes |first11=Demetrius K. |last12=Gounis |first12=Matthew J. |last13=Puri |first13=Ajit S. |date=2020-07-31 |title=A neurovascular high-frequency optical coherence tomography system enables in situ cerebrovascular volumetric microscopy |journal=Nature Communications |language=en |volume=11 |issue=1 |page=3851 |doi=10.1038/s41467-020-17702-7 |issn=2041-1723 |pmc=7395105 |pmid=32737314|bibcode=2020NatCo..11.3851U }}</ref><ref>{{Cite journal |last1=Pereira |first1=Vitor M. |last2=Lylyk |first2=Pedro |last3=Cancelliere |first3=Nicole |last4=Lylyk |first4=Pedro N. |last5=Lylyk |first5=Ivan |last6=Anagnostakou |first6=Vania |last7=Bleise |first7=Carlos |last8=Nishi |first8=Hidehisa |last9=Epshtein |first9=Mark |last10=King |first10=Robert M. |last11=Shazeeb |first11=Mohammed Salman |last12=Puri |first12=Ajit S. |last13=Liang |first13=Conrad W. |last14=Hanel |first14=Ricardo A. |last15=Spears |first15=Julian |date=2024-05-15 |title=Volumetric microscopy of cerebral arteries with a miniaturized optical coherence tomography imaging probe |url=https://www.science.org/doi/10.1126/scitranslmed.adl4497 |journal=Science Translational Medicine |language=en |volume=16 |issue=747 |pages=eadl4497 |doi=10.1126/scitranslmed.adl4497 |issn=1946-6234 |pmid=38748771|url-access=subscription }}</ref> [[oncology]], and [[dentistry]].<ref>{{cite journal | vauthors = Wijns W, Shite J, Jones MR, Lee SW, Price MJ, Fabbiocchi F, Barbato E, Akasaka T, Bezerra H, Holmes D | display-authors = 6 | title = Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study | journal = European Heart Journal | volume = 36 | issue = 47 | pages = 3346β3355 | date = December 2015 | pmid = 26242713 | pmc = 4677272 | doi = 10.1093/eurheartj/ehv367 }}</ref><ref>{{cite journal | vauthors = Fujimoto J, Huang D | title = Foreword: 25 Years of Optical Coherence Tomography | journal = Investigative Ophthalmology & Visual Science | volume = 57 | issue = 9 | pages = OCTi-OCTii | date = July 2016 | pmid = 27419359 | doi = 10.1167/iovs.16-20269 | doi-access = free | hdl = 1721.1/105905 | hdl-access = free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)