Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Particle swarm optimization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Use American English|date=January 2019}} {{Short description|Iterative simulation method}} [[File:ParticleSwarmArrowsAnimation.gif|thumb|A particle swarm searching for the [[global minimum]] of a function]] In [[computational science]], '''particle swarm optimization''' ('''PSO''')<ref name=bonyadi16survey/> is a computational method that [[Mathematical optimization|optimizes]] a problem by [[iterative method|iteratively]] trying to improve a [[candidate solution]] with regard to a given measure of quality. It solves a problem by having a population of candidate solutions, here dubbed [[Point particle|particle]]s, and moving these particles around in the [[Optimization (mathematics)#Concepts and notation|search-space]] according to simple [[formula|mathematical formulae]] over the particle's [[Position (vector)|position]] and [[velocity]]. Each particle's movement is influenced by its local best known position, but is also guided toward the best known positions in the search-space, which are updated as better positions are found by other particles. This is expected to move the swarm toward the best solutions. PSO is originally attributed to [[James Kennedy (social psychologist)|Kennedy]], [[Russell C. Eberhart|Eberhart]] and [[Yuhui Shi|Shi]]<ref name=kennedy95particle/><ref name=shi98modified/> and was first intended for [[computer simulation|simulating]] [[social behaviour]],<ref name=kennedy97particle/> as a stylized representation of the movement of organisms in a bird [[Flocking (behavior)|flock]] or [[fish school]]. The algorithm was simplified and it was observed to be performing optimization. The book by Kennedy and Eberhart<ref name=kennedy01swarm/> describes many philosophical aspects of PSO and [[swarm intelligence]]. An extensive survey of PSO applications is made by [[Riccardo Poli|Poli]].<ref name=poli07analysis/><ref name=poli08analysis/> In 2017, a comprehensive review on theoretical and experimental works on PSO has been published by Bonyadi and Michalewicz.<ref name=bonyadi16survey/> PSO is a [[metaheuristic]] as it makes few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions. Also, PSO does not use the [[gradient]] of the problem being optimized, which means PSO does not require that the optimization problem be [[Differentiable function|differentiable]] as is required by classic optimization methods such as [[gradient descent]] and [[quasi-newton methods]]. However, metaheuristics such as PSO do not guarantee an optimal solution is ever found.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)