Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pascal's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Theorem on the collinearity of three points generated from a hexagon inscribed on a conic}} [[File:Pascaltheoremgenericwithlabels.svg|thumb|250px|Pascal line {{math|''GHK''}} of self-crossing hexagon {{math|''ABCDEF''}} inscribed in ellipse. Opposite sides of hexagon have the same color.]] [[Image:Pascal'sTheoremLetteredColored.PNG|thumb|250px|Self-crossing hexagon {{math|''ABCDEF''}}, inscribed in a circle. Its sides are extended so that pairs of opposite sides intersect on Pascal's line. Each pair of extended opposite sides has its own color: one red, one yellow, one blue. Pascal's line is shown in white.]] In [[projective geometry]], '''Pascal's theorem''' (also known as the '''''hexagrammum mysticum theorem''''', [[Latin]] for mystical [[hexagram]]) states that if six arbitrary points are chosen on a [[conic section|conic]] (which may be an [[ellipse]], [[parabola]] or [[hyperbola]] in an appropriate [[affine plane]]) and joined by line segments in any order to form a [[hexagon]], then the three pairs of opposite [[Edge (geometry)|sides]] of the hexagon ([[extended side|extended]] if necessary) meet at three points which lie on a straight line, called the '''Pascal line''' of the hexagon. It is named after [[Blaise Pascal]]. The theorem is also valid in the [[Euclidean plane]], but the statement needs to be adjusted to deal with the special cases when opposite sides are parallel. This theorem is a generalization of [[Pappus's hexagon theorem|Pappus's (hexagon) theorem]], which is the special case of a [[degenerate conic]] of two lines with three points on each line.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)