Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Perron–Frobenius theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Theory in linear algebra}} In [[matrix theory]], the '''Perron–Frobenius theorem''', proved by {{harvs|txt|authorlink=Oskar Perron|first=Oskar|last= Perron|year=1907}} and {{harvs|txt|authorlink=Georg Frobenius|first=Georg |last=Frobenius|year=1912}}, asserts that a [[real square matrix]] with positive entries has a unique [[eigenvalue]] of largest magnitude and that eigenvalue is real. The corresponding [[eigenvector]] can be chosen to have strictly positive components, and also asserts a similar statement for certain classes of [[nonnegative matrices]]. This theorem has important applications to probability theory ([[ergodicity]] of [[Markov chain]]s); to the theory of [[dynamical systems]] ([[subshifts of finite type]]); to economics ([[Okishio's theorem]],<ref>{{Cite journal|last=Bowles|first=Samuel|date=1981-06-01|title=Technical change and the profit rate: a simple proof of the Okishio theorem|journal=Cambridge Journal of Economics|language=en|volume=5|issue=2|pages=183–186|doi=10.1093/oxfordjournals.cje.a035479|issn=0309-166X}}</ref> [[Hawkins–Simon condition]]<ref name="Meyer681">{{harvnb|Meyer|2000|pp=[http://www.matrixanalysis.com/Chapter8.pdf 8.3.6 p. 681] {{cite web |url=http://www.matrixanalysis.com/Chapter8.pdf |title=Archived copy |access-date=2010-03-07 |url-status=dead |archive-url=https://web.archive.org/web/20100307021652/http://www.matrixanalysis.com/Chapter8.pdf |archive-date=March 7, 2010 }}}}</ref>); to demography ([[Leslie matrix|Leslie population age distribution model]]);<ref name="Meyer683">{{harvnb|Meyer|2000|pp=[http://www.matrixanalysis.com/Chapter8.pdf 8.3.7 p. 683] {{cite web |url=http://www.matrixanalysis.com/Chapter8.pdf |title=Archived copy |access-date=2010-03-07 |url-status=dead |archive-url=https://web.archive.org/web/20100307021652/http://www.matrixanalysis.com/Chapter8.pdf |archive-date=March 7, 2010 }}}}</ref> to social networks ([[DeGroot learning|DeGroot learning process]]); to Internet search engines ([[PageRank]]);<ref name="LangvilleMeyer167">{{harvnb|Langville|Meyer|2006|p=[https://books.google.com/books?id=hxvB14-I0twC&pg=PA167 15.2 p. 167]}} {{cite book |url=https://books.google.com/books?id=hxvB14-I0twC&pg=PA167 |title=Google's PageRank and Beyond: The Science of Search Engine Rankings |access-date=2016-10-31 |url-status=bot: unknown |archive-url=https://web.archive.org/web/20140710041730/https://books.google.com/books?id=hxvB14-I0twC&lpg=PP1&dq=isbn%3A0691122024&pg=PA167 |archive-date=July 10, 2014 |isbn=978-0691122021 |last1=Langville |first1=Amy N.|author1-link= Amy Langville |last2=Langville |first2=Amy N. |last3=Meyer |first3=Carl D. |date=2006-07-23 |publisher=Princeton University Press }}</ref> and even to ranking of American football teams.<ref name="Keener80">{{harvnb|Keener|1993|p=[https://www.jstor.org/stable/2132526 p. 80]}}</ref> The first to discuss the ordering of players within tournaments using Perron–Frobenius eigenvectors is [[Edmund Landau]].<ref>{{citation | title = Zur relativen Wertbemessung der Turnierresultaten| pages = 366–369| volume = XI | journal = Deutsches Wochenschach | year=1895 | first1=Edmund | last1=Landau }}</ref><ref>{{citation | title = Über Preisverteilung bei Spielturnieren| pages = 192–202| volume = 63 | journal =Zeitschrift für Mathematik und Physik | year=1915 | first1=Edmund | last1=Landau | url = http://iris.univ-lille1.fr/handle/1908/2031 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)