Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Persistence of a number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Property of a number}} In [[mathematics]], the '''persistence of a number''' is the number of times one must apply a given operation to an [[integer]] before reaching a [[Fixed point (mathematics)|fixed point]] at which the operation no longer alters the number. Usually, this involves additive or multiplicative persistence of a non-negative integer, which is how often one has to replace the number by the sum or product of its digits until one reaches a single digit. Because the numbers are broken down into their digits, the additive or multiplicative persistence depends on the [[radix]]. In the remainder of this article, [[base ten]] is assumed. The single-digit final state reached in the process of calculating an integer's additive persistence is its [[digital root]]. Put another way, a number's additive persistence counts how many times we must [[digit sum|sum its digits]] to arrive at its digital root.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)