Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pronic number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Number, product of consecutive integers}} A '''pronic number''' is a number that is the product of two consecutive [[integer]]s, that is, a number of the form <math>n(n+1)</math>.<ref name="bon">{{citation |first1=J. H. |last1=Conway |author1-link=John H. Conway |first2=R. K. |last2=Guy |author2-link=Richard K. Guy |title=The Book of Numbers |location=New York |publisher=Copernicus |at=Figure 2.15, p. 34 |year=1996}}.</ref> The study of these numbers dates back to [[Aristotle]]. They are also called '''oblong numbers''', '''heteromecic numbers''',<ref name="knorr">{{citation | last = Knorr | first = Wilbur Richard | author-link = Wilbur Knorr | isbn = 90-277-0509-7 | location = Dordrecht-Boston, Mass. | mr = 0472300 | pages = 144β150 | publisher = D. Reidel Publishing Co. | title = The evolution of the Euclidean elements | url = https://books.google.com/books?id=_1H6BwAAQBAJ&pg=PA144 | year = 1975}}.</ref> or '''rectangular numbers''';<ref name="hist"/> however, the term "rectangular number" has also been applied to the [[composite number]]s.<ref>{{citation|url=https://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:2008.01.0238:section=42|title=Plutarch, De Iside et Osiride, section 42|website=www.perseus.tufts.edu|access-date=16 April 2018}}</ref><ref>{{citation|title=Number Story: From Counting to Cryptography|first=Peter Michael|last=Higgins|publisher=Copernicus Books|year=2008|isbn=9781848000018|page=9|url=https://books.google.com/books?id=HcIwkWXy3CwC&pg=PA9}}.</ref> The first 60 pronic numbers are: :[[0 (number)|0]], [[2 (number)|2]], [[6 (number)|6]], [[12 (number)|12]], [[20 (number)|20]], [[30 (number)|30]], [[42 (number)|42]], [[56 (number)|56]], [[72 (number)|72]], [[90 (number)|90]], [[110 (number)|110]], [[132 (number)|132]], 156, 182, 210, 240, 272, 306, 342, 380, [[420 (number)|420]], 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550, 2652, 2756, 2862, 2970, 3080, 3192, 3306, 3422, 3540, 3660... {{OEIS|id=A002378}}. Letting <math>P_n</math> denote the pronic number <math>n(n+1)</math>, we have <math>P_{{-}n} = P_{n{-}1}</math>. Therefore, in discussing pronic numbers, we may assume that <math>n\geq 0</math> [[without loss of generality]], a convention that is adopted in the following sections. ==As figurate numbers== [[File:Illustration of Triangular Number Leading to a Rectangle.svg|120px|thumb|Twice a triangular number is a pronic number]] [[File:Illustration of Pronic Number n^2 and nplus1^2.svg|120px|thumb|The {{mvar|n}}th pronic number is {{mvar|n}} more than the {{mvar|n}}th [[square number]] and {{mvar|n}}+1 less than the ({{mvar|n}}+1)st square]] The pronic numbers were studied as [[figurate number]]s alongside the [[triangular number]]s and [[square number]]s in [[Aristotle]]'s ''[[Metaphysics (Aristotle)|Metaphysics]]'',<ref name="knorr"/> and their discovery has been attributed much earlier to the [[Pythagoreans]].<ref name="hist">{{citation|title=Historical Encyclopedia of Natural and Mathematical Sciences, Volume 1|series=Springer reference|first=Ari|last=Ben-Menahem|publisher=Springer-Verlag|year=2009|isbn=9783540688310|page=161|url=https://books.google.com/books?id=9tUrarQYhKMC&pg=PA161}}.</ref> As a kind of figurate number, the pronic numbers are sometimes called ''oblong''<ref name="knorr"/> because they are analogous to [[polygonal number]]s in this way:<ref name="bon"/> :{| style="text-align: center" |- valign="bottom" |style="padding: 0 1em"|[[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] |style="padding: 0 1em"|[[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]]<br>[[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] |style="padding: 0 1em"|[[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]]<br>[[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]]<br>[[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] |style="padding: 0 1em"|[[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]]<br>[[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]]<br>[[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]]<br>[[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] [[Image:GrayDot.svg|16px|*]] |- |1 Γ 2||2 Γ 3||3 Γ 4||4 Γ 5 |} The {{mvar|n}}th pronic number is the sum of the first {{mvar|n}} [[Even and odd numbers|even]] integers, and as such is twice the {{Mvar|n}}th triangular number<ref name="bon"/><ref name="knorr"/> and {{mvar|n}} more than the {{mvar|n}}th [[square number]], as given by the alternative formula {{math|''n''<sup>2</sup> + ''n''}} for pronic numbers. Hence the {{mvar|n}}th pronic number and the {{mvar|n}}th square number (the sum of the [[Square_number#Properties|first {{mvar|n}} odd integers]]) form a [[superparticular ratio]]: :<math> \frac{n(n+1)}{n^2} = \frac{n + 1}{n} </math> Due to this ratio, the {{mvar|n}}th pronic number is at a [[#Additional_properties|radius]] of {{mvar|n}} and {{mvar|n}} + 1 from a perfect square, and the {{mvar|n}}th perfect square is at a radius of {{mvar|n}} from a pronic number. The {{mvar|n}}th pronic number is also the difference between the [[Even and odd numbers|odd square]] {{math|(2''n'' + 1)<sup>2</sup>}} and the {{math|(''n''+1)}}st [[centered hexagonal number]]. Since the number of off-diagonal entries in a [[square matrix]] is twice a triangular number, it is a pronic number.<ref>{{citation|title=Applied Factor Analysis|first=Rudolf J.|last=Rummel|publisher=Northwestern University Press|year=1988|isbn=9780810108240|page=319|url=https://books.google.com/books?id=g_eNa_XzyEIC&pg=PA319}}.</ref> ==Sum of pronic numbers== The partial sum of the first {{mvar|n}} positive pronic numbers is twice the value of the {{mvar|n}}th [[tetrahedral number]]: :<math>\sum_{k=1}^{n} k(k+1) =\frac{n(n+1)(n+2)}{3}= 2T_n </math>. The sum of the reciprocals of the positive pronic numbers (excluding 0) is a [[telescoping series]] that sums to 1:<ref name="telescope">{{citation |last=Frantz |first=Marc |title=The Calculus Collection: A Resource for AP and Beyond |pages=467β468 |year=2010 |editor1-last=Diefenderfer |editor1-first=Caren L. |series=Classroom Resource Materials |contribution=The telescoping series in perspective |contribution-url=https://books.google.com/books?id=SHJ39945R1kC&pg=PA467 |publisher=Mathematical Association of America |isbn=9780883857618 |editor2-last=Nelsen |editor2-first=Roger B. |editor1-link=Caren Diefenderfer}}.</ref> :<math>\sum_{i=1}^{\infty} \frac{1}{i(i+1)}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\cdots=1</math>. The [[partial sum]] of the first {{mvar|n}} terms in this series is<ref name="telescope" /> :<math>\sum_{i=1}^{n} \frac{1}{i(i+1)} =\frac{n}{n+1}</math>. The alternating sum of the reciprocals of the positive pronic numbers (excluding 0) is a [[convergent series]]: :<math>\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i(i+1)}=\frac{1}{2}-\frac{1}{6}+\frac{1}{12}-\frac{1}{20}\cdots=\log(4)-1</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)