Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Proton decay
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Hypothetical particle decay process of a proton}} {{about|the hypothetical decay of protons|the type of radioactive decay in which a nucleus ejects a proton|Proton emission|the radioactive decay where a proton within a nucleus converts to a neutron|positron emission}} {{redirect|Nucleon decay|decay of neutrons|neutron decay (disambiguation){{!}}neutron decay}} [[File:Proton decay.svg|upright=1.6|right|thumb|The pattern of [[weak isospin]]s, [[weak hypercharge]]s, and [[color charge]]s for particles in the [[Georgi–Glashow model]]. Here, a proton, consisting of two up quarks and a down, decays into a pion, consisting of an up and anti-up, and a positron, via an X boson with electric charge −{{sfrac|4|3}}''e''.]] In [[particle physics]], '''proton decay''' is a [[Hypothesis|hypothetical]] form of [[particle decay]] in which the [[proton]] decays into lighter [[subatomic particle]]s, such as a neutral [[pion]] and a [[positron]].<ref>{{Citation |last=Ahmad |first=Ishfaq |title=Radioactive decays by Protons. Myth or reality? |date=1969 |work=The Nucleus |pages=69–70 |author-link=Ishfaq Ahmad Khan}}</ref> The proton decay hypothesis was first formulated by [[Andrei Sakharov]] in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least {{val|1.67|e=34|u=years}}.<ref name="Bajc">{{cite journal |arxiv=1603.03568 |bibcode= 2016NuPhB.910....1B|doi=10.1016/j.nuclphysb.2016.06.017|title= Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU(5) GUTs|journal= Nuclear Physics B|volume= 910|page= 1|year= 2016|last1= Bajc|first1= Borut|last2= Hisano|first2= Junji|last3= Kuwahara|first3= Takumi|last4= Omura|first4= Yuji|s2cid= 119212168}}</ref> According to the [[Standard Model]], the proton, a type of [[baryon]], is stable because [[baryon number]] ([[quark number]]) is [[conservation of baryon number|conserved]] (under normal circumstances; see ''[[Chiral anomaly]]'' for an exception). Therefore, protons will not decay into other particles on their own, because they are the lightest (and therefore least energetic) baryon. [[Positron emission]] and [[electron capture]]—forms of [[radioactive decay]] in which a proton becomes a neutron—are not proton decay, since the proton interacts with other particles within the atom. Some beyond-the-Standard-Model [[Grand Unified Theory|grand unified theories]] (GUTs) explicitly break the baryon number symmetry, allowing protons to decay via the [[Higgs particle]], [[magnetic monopoles]], or new [[X boson]]s with a half-life of 10{{sup|31}} to 10{{sup|36}} years. For comparison, the [[Age of the universe|universe is roughly {{val|1.38|e=10}} years old]].<ref>{{Cite web|last=Francis|first=Matthew R.|title=Do protons decay?|url=https://www.symmetrymagazine.org/article/do-protons-decay|access-date=2020-11-12|website=symmetry magazine|date=22 September 2015 |language=en}}</ref> To date, all attempts to observe new phenomena predicted by GUTs (like proton decay or the existence of [[magnetic monopoles]]) have failed. [[Quantum tunnelling]] may be one of the mechanisms of proton decay.<ref name="url[nucl-th/9809006] Time-dependent properties of proton decay from crossing single-particle metastable states in deformed nuclei">{{cite journal |title=Time-dependent properties of proton decay from crossing single-particle metastable states in deformed nuclei |year=1998 |doi=10.1103/PhysRevC.58.3280 |arxiv=nucl-th/9809006 |last1=Talou |first1=P. |last2=Carjan |first2=N. |last3=Strottman |first3=D. |journal=Physical Review C |volume=58 |issue=6 |pages=3280–3285 |bibcode=1998PhRvC..58.3280T |s2cid=119075457 }}</ref><ref name="dadicus 1982">{{Cite journal |last1=Dicus |first1=D. A. |last2=Letaw |first2=J. R. |last3=Teplitz |first3=D. C. |last4=Teplitz |first4=V. L. |date=January 1982 |title=Effects of proton decay on the cosmological future |journal=[[The Astrophysical Journal]] |language=en |volume=252 |pages=1 |bibcode=1982ApJ...252....1D |doi=10.1086/159528 |issn=0004-637X}}</ref><ref name="urlQuantum Tunnelling to the Origin and Evolution of Life">{{cite journal |title=Quantum Tunnelling to the Origin and Evolution of Life |year=2013 |pmc=3768233 |last1=Trixler |first1=F. |journal=Current Organic Chemistry |volume=17 |issue=16 |pages=1758–1770 |doi=10.2174/13852728113179990083 |pmid=24039543 }}</ref> [[Quantum gravity]]<ref>{{cite journal |title=Dangerous implications of a minimum length in quantum gravity |year=2008 |doi=10.1088/0264-9381/25/19/195013 |arxiv=0803.0749 |last1=Bambi |first1=Cosimo |last2=Freese |first2=Katherine |journal=Classical and Quantum Gravity |volume=25 |issue=19 |page=195013 |bibcode=2008CQGra..25s5013B |hdl=2027.42/64158 |s2cid=2040645 }}</ref> (via [[virtual black hole]]s and [[Hawking radiation]]) may also provide a venue of proton decay at magnitudes or lifetimes well beyond the GUT scale decay range above, as well as extra dimensions in [[supersymmetry]].<ref name="urlProton Decay, Black Holes, and Large Extra Dimensions - NASA/ADS">{{cite journal |url=https://ui.adsabs.harvard.edu/abs/2001IJMPA..16.2399A/abstract |title=Proton Decay, Black Holes, and Large Extra Dimensions - NASA/ADS |format= |journal= International Journal of Modern Physics A|year=2001 |volume=16 |pages=2399–2410 |doi=10.1142/S0217751X0100369X |bibcode=2001IJMPA..16.2399A |accessdate=|last1=Adams |first1=Fred C. |last2=Kane |first2=Gordon L. |last3=Mbonye |first3=Manasse |last4=Perry |first4=Malcolm J. |issue=13 |arxiv=hep-ph/0009154 |s2cid=14989175 }}</ref><ref name="url[1903.02940] Proton Decay and the Quantum Structure of Spacetime">{{cite journal |title=Proton decay and the quantum structure of space–time |year=2019 |doi=10.1139/cjp-2018-0423 |arxiv=1903.02940 |last1=Al-Modlej |first1=Abeer |last2=Alsaleh |first2=Salwa |last3=Alshal |first3=Hassan |last4=Ali |first4=Ahmed Farag |journal=Canadian Journal of Physics |volume=97 |issue=12 |pages=1317–1322 |bibcode=2019CaJPh..97.1317A |hdl=1807/96892 |s2cid=119507878 }}</ref><ref>{{cite arXiv |title=The black hole information paradox |eprint=hep-th/9508151 |author1-link=Steven Giddings |last1=Giddings |first1=Steven B. |year=1995 }}</ref><ref>{{cite journal |url=https://www.researchgate.net/publication/315696398 |doi=10.1209/0295-5075/118/50008 |title=Virtual black holes from the generalized uncertainty principle and proton decay |year=2017 |last1=Alsaleh |first1=Salwa |last2=Al-Modlej |first2=Abeer |last3=Farag Ali |first3=Ahmed |journal=Europhysics Letters |volume=118 |issue=5 |page=50008 |arxiv=1703.10038 |bibcode=2017EL....11850008A |s2cid=119369813 }}</ref> There are theoretical methods of baryon violation other than proton decay including interactions with changes of baryon and/or lepton number other than 1 (as required in proton decay). These included [[Baryon number|''B'']] and/or [[Lepton number|''L'']] violations of 2, 3, or other numbers, or [[B − L|''B'' − ''L'']] violation. Such examples include neutron oscillations and the electroweak [[sphaleron]] [[chiral anomaly|anomaly]] at high energies and temperatures that can result between the collision of protons into antileptons<ref>{{Cite journal |doi = 10.1103/PhysRevD.92.045005 |title = Bloch wave function for the periodic sphaleron potential and unsuppressed baryon and lepton number violating processes |year = 2015 |last1 = Tye |first1 = S.-H. Henry |last2 = Wong |first2 = Sam S. C. |journal = Physical Review D |volume = 92 |issue = 4 |page = 045005 |arxiv = 1505.03690 |bibcode = 2015PhRvD..92d5005T |s2cid = 73528684 }}</ref> or vice versa (a key factor in [[leptogenesis (physics)|leptogenesis]] and non-GUT [[baryogenesis]]).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)