Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum harmonic oscillator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Use American English|date = February 2019}} {{Short description|Important, well-understood quantum mechanical model}} {{Quantum mechanics}} {{redirect|QHO|text=It is also the [[IATA airport code]] for [[Transportation in Houston#Airports|all airports in the Houston area]]}}{{Inline citations|date=November 2023}}[[File:QuantumHarmonicOscillatorAnimation.gif|thumb|300px|right|Some trajectories of a [[harmonic oscillator]] according to [[Newton's laws]] of [[classical mechanics]] (A–B), and according to the [[Schrödinger equation]] of [[quantum mechanics]] (C–H). In A–B, the particle (represented as a ball attached to a [[Hooke's law|spring]]) oscillates back and forth. In C–H, some solutions to the Schrödinger Equation are shown, where the horizontal axis is position, and the vertical axis is the real part (blue) or imaginary part (red) of the [[wavefunction]]. C, D, E, F, but not G, H, are [[energy eigenstate]]s. H is a [[Coherent states|coherent state]]—a quantum state that approximates the classical trajectory.]] The '''quantum harmonic oscillator''' is the [[quantum mechanics|quantum-mechanical]] analog of the [[harmonic oscillator|classical harmonic oscillator]]. Because an arbitrary smooth [[Potential energy|potential]] can usually be approximated as a [[Harmonic oscillator#Simple harmonic oscillator|harmonic potential]] at the vicinity of a stable [[equilibrium point]], it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, [[List_of_quantum-mechanical_systems_with_analytical_solutions|analytical solution]] is known.{{sfn|Griffiths|2004}}{{sfn|Liboff|2002}}<ref>{{Cite web | last =Rashid | first =Muneer A. | author-link =Munir Ahmad Rashid | title =Transition amplitude for time-dependent linear harmonic oscillator with Linear time-dependent terms added to the Hamiltonian | website =M.A. Rashid – [[National University of Sciences and Technology, Pakistan|Center for Advanced Mathematics and Physics]] | publisher =[[National Center for Physics]] | year =2006 | url =http://www.ncp.edu.pk/docs/12th_rgdocs/Munir-Rasheed.pdf | format =[[PDF]]-[[Microsoft PowerPoint]] | access-date =19 October 2010 | archive-date =3 March 2016 | archive-url =https://web.archive.org/web/20160303233341/http://www.ncp.edu.pk/docs/12th_rgdocs/Munir-Rasheed.pdf | url-status =dead }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)