Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quaternion group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Non-abelian group of order eight}} {|class="wikitable" align="right" style="text-align:center; margin-left:0.5em;" |+Quaternion group multiplication table (simplified form) |- !width=15| !width=15|{{math|1}} !width=15|{{math|'''i'''}} !width=15|{{math|'''j'''}} !width=15|{{math|'''k'''}} |- !{{math|1}} |{{math|1}} |{{math|'''i'''}} |{{math|'''j'''}} |{{math|'''k'''}} |- !{{math|'''i'''}} |{{math|'''i'''}} |{{math|β1}} |{{math|'''k'''}} |{{math|β'''j'''}} |- !{{math|'''j'''}} |{{math|'''j'''}} |{{math|β'''k'''}} |{{math|β1}} |{{math|'''i'''}} |- !{{math|'''k'''}} |{{math|'''k'''}} |{{math|'''j'''}} |{{math|β'''i'''}} |{{math|β1}} |} {{Group theory sidebar |Finite}} [[Image:GroupDiagramQ8.svg|240px|thumb|[[Cycle graph (group)|Cycle diagram]] of Q<sub>8</sub>. Each color specifies a series of powers of any element connected to the identity element e = 1. For example, the cycle in red reflects the fact that i<sup>2</sup> = {{overline|e}}, i<sup>3</sup> = {{overline|i}} and i<sup>4</sup> = e. The red cycle also reflects that {{overline|i}}<sup>2</sup> = {{overline|e}}, {{overline|i}}<sup>3</sup> = i and {{overline|i}}<sup>4</sup> = e.]] In [[group theory]], the '''quaternion group''' Q<sub>8</sub> (sometimes just denoted by Q) is a [[nonabelian group|non-abelian]] [[group (mathematics)|group]] of [[Group order|order]] eight, isomorphic to the eight-element subset <math>\{1,i,j,k,-1,-i,-j,-k\}</math> of the [[quaternion]]s under multiplication. It is given by the [[presentation of a group|group presentation]] :<math>\mathrm{Q}_8 = \langle \bar{e},i,j,k \mid \bar{e}^2 = e, \;i^2 = j^2 = k^2 = ijk = \bar{e} \rangle ,</math> where ''e'' is the identity element and {{overline|''e''}} [[commutativity|commutes]] with the other elements of the group. These relations, discovered by [[W. R. Hamilton]], also generate the quaternions as an algebra over the real numbers. Another presentation of Q<sub>8</sub> is :<math>\mathrm{Q}_8 = \langle a,b \mid a^4 = e, a^2 = b^2, ba = a^{-1}b\rangle.</math> Like many other finite groups, it [[Inverse Galois problem|can be realized]] as the [[#Galois group|Galois group]] of a certain field of [[algebraic number]]s.<ref name=":0" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)