Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reaction rate
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Speed at which a chemical reaction takes place}} {{Infobox physical quantity | name = Reaction rate | symbols = ν | unit = mol⋅L{{sup|-1}}⋅s{{sup|-1}} | baseunits = mol⋅m{{sup|-3}}⋅s{{sup|-1}} | dimension = L{{sup|-3}}⋅T{{sup|-1}}⋅N }} [[Image:Rust03102006.JPG|thumb|225px|Iron [[rusting]] has a ''low'' reaction rate. This process is slow.]] [[File:Large bonfire.jpg|thumb|225px|Wood [[combustion]] has a ''high'' reaction rate. This process is fast.]] The '''reaction rate''' or '''rate of reaction''' is the speed at which a [[chemical reaction]] takes place, defined as proportional to the increase in the [[concentration]] of a [[Product (chemistry)|product]] per unit time and to the decrease in the concentration of a [[reactant]] per unit time.<ref>{{Cite book|last=McMurry, John |title=Chemistry |author2=Fay, Robert C. |author3=Robinson, Jill K.|date=31 December 2014|isbn=978-0-321-94317-0|edition=Seventh|location=Boston|pages=492|oclc=889577526}}</ref> Reaction rates can vary dramatically. For example, the [[Rusting#Chemical reactions|oxidative rusting]] of [[iron]] under [[Earth's atmosphere]] is a slow reaction that can take many years, but the combustion of [[cellulose]] in a fire is a reaction that takes place in fractions of a second. For most reactions, the rate decreases as the reaction proceeds. A reaction's rate can be determined by measuring the changes in concentration over time. [[Chemical kinetics]] is the part of [[physical chemistry]] that concerns how rates of chemical reactions are measured and predicted, and how reaction-rate data can be used to deduce probable [[reaction mechanism]]s.<ref>{{Cite book|last=Petrucci, Ralph H. |title=General chemistry: principles and modern applications |author2=Herring, F. Geoffrey |author3=Madura, Jeffry D. |author4=Bissonnette, Carey |date=4 February 2016 |isbn=978-0-13-293128-1|edition=Eleventh |location=Toronto|pages=923|oclc=951078429}}</ref> The concepts of chemical kinetics are applied in many disciplines, such as [[chemical engineering]],<ref>{{Cite journal|last1=Silva|first1=Camylla K. S.|last2=Baston|first2=Eduardo P.|last3=Melgar|first3=Lisbeth Z.|last4=Bellido|first4=Jorge D. A.|date=2019-10-01|title=Ni/Al2O3-La2O3 catalysts synthesized by a one-step polymerization method applied to the dry reforming of methane: effect of precursor structures of nickel, perovskite and spinel|journal=Reaction Kinetics, Mechanisms and Catalysis|language=en|volume=128|issue=1|pages=251–269|doi=10.1007/s11144-019-01644-3|s2cid=199407594|issn=1878-5204}}</ref><ref>{{Cite journal|last1=Elizalde|first1=Ignacio|last2=Mederos|first2=Fabián S.|last3=del Carmen Monterrubio|first3=Ma.|last4=Casillas|first4=Ninfa|last5=Díaz|first5=Hugo|last6=Trejo|first6=Fernando|date=2019-02-01|title=Mathematical modeling and simulation of an industrial adiabatic trickle-bed reactor for upgrading heavy crude oil by hydrotreatment process|journal=Reaction Kinetics, Mechanisms and Catalysis|language=en|volume=126|issue=1|pages=31–48|doi=10.1007/s11144-018-1489-7|s2cid=105735334|issn=1878-5204}}</ref> [[enzymology]] and [[environmental engineering]].<ref>{{Cite journal|last1=Liu|first1=Jiaqi|last2=Shen|first2=Meiqing|last3=Li|first3=Chenxu|last4=Wang|first4=Jianqiang|last5=Wang|first5=Jun|date=2019-10-01|title=Enhanced hydrothermal stability of a manganese metavanadate catalyst based on WO3–TiO2 for the selective catalytic reduction of NOx with NH3|journal=Reaction Kinetics, Mechanisms and Catalysis|language=en|volume=128|issue=1|pages=175–191|doi=10.1007/s11144-019-01624-7|s2cid=199078451|issn=1878-5204}}</ref><ref>{{Cite journal|last1=Li|first1=Xiaoliang|last2=Feng|first2=Jiangjiang|last3=Xu|first3=Zhigang|last4=Wang|first4=Junqiang|last5=Wang|first5=Yujie|last6=Zhao|first6=Wei|date=2019-10-01|title=Cerium modification for improving the performance of Cu-SSZ-13 in selective catalytic reduction of NO by NH3|journal=Reaction Kinetics, Mechanisms and Catalysis|language=en|volume=128|issue=1|pages=163–174|doi=10.1007/s11144-019-01621-w|s2cid=189874787|issn=1878-5204}}</ref><ref>{{Cite journal|last1=Vedyagin|first1=Aleksey A.|last2=Stoyanovskii|first2=Vladimir O.|last3=Kenzhin|first3=Roman M.|last4=Slavinskaya|first4=Elena M.|last5=Plyusnin|first5=Pavel E.|last6=Shubin|first6=Yury V.|date=2019-06-01|title=Purification of gasoline exhaust gases using bimetallic Pd–Rh/δ-Al2O3 catalysts|journal=Reaction Kinetics, Mechanisms and Catalysis|language=en|volume=127|issue=1|pages=137–148|doi=10.1007/s11144-019-01573-1|s2cid=145994544|issn=1878-5204}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)