Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reaction wheel
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Attitude control device used in spacecraft}} [[File:Reaction wheel00.jpg|thumb|upright|right|A small reaction wheel viewed in profile]] [[File:Reaction wheel02.jpg|thumb|upright|A momentum/reaction wheel comprising part of a high-accuracy Conical Earth Sensor to maintain a satellite's precise attitude]] A '''reaction wheel''' ('''RW''') is an electric motor attached to a [[flywheel]], which, when its rotation speed is changed, causes a counter-rotation proportionately through [[Angular momentum#Conservation of angular momentum|conservation of angular momentum]].<ref>{{cite web|publisher=NASA |url=https://spinoff.nasa.gov/spinoff1997/t3.html |title=Reaction/Momentum Wheel |access-date=15 June 2018}}</ref> A reaction wheel can rotate only around its [[center of mass]]; it is not capable of moving from one place to another ([[translation (physics)|translational force]]). Reaction wheels are used primarily by [[spacecraft]] for three-axis [[Spacecraft attitude control|attitude control]], and do not require [[Rocket engine|rocket]]s or external applicators of [[torque]], which reduces the [[payload fraction|mass fraction]] needed for fuel. They provide a high pointing accuracy,<ref name=smad>{{cite book|title=Space Mission Analysis and Design|edition=3|author=Wiley J Larson and James R Wertz |date=January 1999|publisher=Microcosm Press |isbn=1-881883-10-8}}</ref>{{rp|362}} and are particularly useful when the spacecraft must be rotated by very small amounts, such as keeping a telescope pointed at a star. A reaction wheel is sometimes operated at a constant (or near-constant) rotation speed, to provide a satellite with a large amount of stored [[angular momentum]]. Doing so alters the spacecraft's rotational dynamics so that disturbance torques perpendicular to one axis of the satellite (the axis parallel to the wheel's spin axis) do not result directly in spacecraft angular motion about the same axis as the disturbance torque; instead, they result in (generally smaller) angular motion ([[precession]]) of that spacecraft axis about a perpendicular axis. This has the effect of tending to stabilize that spacecraft axis to point in a nearly-fixed direction,<ref name=smad/>{{rp|362}} allowing for a less-complicated attitude control system. Satellites using this "momentum-bias" stabilization approach include [[SCISAT-1]]; by orienting the momentum wheel's axis to be parallel to the orbit-normal vector, this satellite is in a "pitch momentum bias" configuration.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)