Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Regular space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Property of topological space}} {{More citations needed|date=April 2022}} {{Separation axioms}} In [[topology]] and related fields of [[mathematics]], a [[topological space]] ''X'' is called a '''regular space''' if every [[closed subset]] ''C'' of ''X'' and a point ''p'' not contained in ''C'' have non-overlapping [[open neighborhood]]s.<ref>{{cite book | last=Munkres | first=James R. | authorlink=James Munkres | title=Topology | edition=2nd | publisher=[[Prentice Hall]] | year=2000 | isbn=0-13-181629-2}}</ref> Thus ''p'' and ''C'' can be [[separated sets|separated]] by neighborhoods. This condition is known as '''Axiom T<sub>3</sub>'''. The term "'''T<sub>3</sub> space'''" usually means "a regular [[Hausdorff space]]". These conditions are examples of [[separation axiom]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)