Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rule of 72
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{distinguish|72-year rule}} {{short description|Methods of estimating the doubling time of an investment}} In [[finance]], the '''rule of 72''', the '''rule of 70'''<ref name=Meadows/> and the '''rule of 69.3''' are methods for estimating an [[investment]]'s doubling time. The rule number (e.g., 72) is divided by the interest percentage per period (usually years) to obtain the approximate number of periods required for doubling. Although [[scientific calculator]]s and [[spreadsheet]] programs have functions to find the accurate doubling time, the rules are useful for [[mental calculation]]s and when only a basic [[calculator]] is available.<ref>{{Cite book|title=All the Math You'll Ever Need|author=Slavin, Steve|publisher=[[John Wiley & Sons]]|year=1989|isbn=0-471-50636-2|pages=[https://archive.org/details/allmathyoullever00slav/page/153 153β154]|url-access=registration|url=https://archive.org/details/allmathyoullever00slav/page/153}}</ref> These rules apply to [[exponential growth]] and are therefore used for [[compound interest]] as opposed to [[simple interest]] calculations. They can also be used for [[exponential decay|decay]] to obtain a halving time. The choice of number is mostly a matter of preference: 69 is more accurate for continuous compounding, while 72 works well in common interest situations and is more easily divisible. There are a number of variations to the rules that improve accuracy. For periodic compounding, the ''exact'' doubling time for an [[interest rate]] of ''r'' [[percent]] per period is :<math>t = \frac{\ln(2)}{\ln(1+r/100)}\approx \frac{72}{r}</math>, where ''t'' is the number of periods required. The formula above can be used for more than calculating the doubling time. If one wants to know the tripling time, for example, replace the constant 2 in the numerator with 3. As another example, if one wants to know the number of periods it takes for the initial value to rise by 50%, replace the constant 2 with 1.5.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)