Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
SKI combinator calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Simple Turing complete logic}} The '''SKI combinator calculus''' is a [[combinatory logic|combinatory logic system]] and a [[model of computation|computational system]]. It can be thought of as a computer programming language, though it is not convenient for writing software.{{Citation needed|date=May 2025}} Instead, it is important in the mathematical theory of [[algorithm]]s because it is an extremely simple [[Turing complete]] language. It can be likened to a reduced version of the untyped [[lambda calculus]]. It was introduced by [[Moses Schönfinkel]]<ref>{{cite journal |first=M. |last=Schönfinkel |date=1924 |title=Über die Bausteine der mathematischen Logik |journal=Mathematische Annalen |volume=92 |issue=3–4 |pages=305–316 |doi=10.1007/BF01448013|s2cid=118507515 }} Translated by Stefan Bauer-Mengelberg as {{cite book |chapter=On the building blocks of mathematical logic |chapter-url=https://books.google.com/books?id=v4tBTBlU05sC&pg=PA355 |editor-link=Jean van Heijenoort |editor-first=Jean |editor-last=van Heijenoort |orig-year=1967 |title=A Source Book in Mathematical Logic 1879–1931 |publisher=Harvard University Press |pages=355–366 |date=2002 |isbn=9780674324497}}</ref> and [[Haskell Curry]].<ref>{{cite journal|last=Curry|first=Haskell Brooks|title=Grundlagen der Kombinatorischen Logik|journal=American Journal of Mathematics|year=1930|volume=52|issue=3|pages=509–536|authorlink=Haskell Curry|trans-title=Foundations of combinatorial logic|publisher=Johns Hopkins University Press|language=German|doi=10.2307/2370619|jstor=2370619}}</ref> All operations in lambda calculus can be encoded via [[Combinatory logic#Completeness of the S-K basis|abstraction elimination]] into the SKI calculus as [[binary tree]]s whose leaves are one of the three symbols '''S''', '''K''', and '''I''' (called ''combinators'').
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)