Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sigma-additive set function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mapping function}} {{mcn|date=April 2024}} In [[mathematics]], an '''additive set function''' is a [[function (mathematics)|function]] <math display=inline>\mu</math> mapping sets to numbers, with the property that its value on a [[Union (set theory)|union]] of two [[disjoint set|disjoint]] sets equals the sum of its values on these sets, namely, <math display=inline>\mu(A \cup B) = \mu(A) + \mu(B).</math> If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of ''k'' disjoint sets (where ''k'' is a finite number) equals the sum of its values on the sets. Therefore, an additive [[set function]] is also called a '''finitely additive set function''' (the terms are equivalent). However, a finitely additive set function might not have the additivity property for a union of an ''infinite'' number of sets. A '''σ-additive set function''' is a function that has the additivity property even for [[countably infinite]] many sets, that is, <math display=inline>\mu\left(\bigcup_{n=1}^\infty A_n\right) = \sum_{n=1}^\infty \mu(A_n).</math> Additivity and sigma-additivity are particularly important properties of [[Measure (mathematics)|measures]]. They are abstractions of how intuitive properties of size ([[length]], [[area]], [[volume]]) of a set sum when considering multiple objects. Additivity is a weaker condition than σ-additivity; that is, σ-additivity implies additivity. The term '''[[#modular set function|modular set function]]''' is equivalent to additive set function; see [[Sigma-additive set function#modularity|modularity]] below.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)