Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Skew-symmetric matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Form of a matrix}} {{For|matrices with antisymmetry over the complex number field|Skew-Hermitian matrix}} {{More footnotes|date=November 2009}} In [[mathematics]], particularly in [[linear algebra]], a '''skew-symmetric''' (or '''antisymmetric''' or '''antimetric'''<ref>{{cite book |title=Applied Factor Analysis in the Natural Sciences | publisher=Cambridge University Press | year= 1996 | isbn=0-521-57556-7 | page=68 |author1 = Richard A. Reyment |author2 = K. G. Jöreskog |author3=Leslie F. Marcus | author-link2=K. G. Jöreskog }}</ref>) '''matrix''' is a [[square matrix]] whose [[transpose]] equals its negative. That is, it satisfies the condition<ref>{{cite book |title=Schaum's Outline of Theory and Problems of Linear Algebra |first1=Seymour |last1=Lipschutz |first2=Marc |last2=Lipson |date=September 2005 |isbn=9780070605022 |publisher=McGraw-Hill | page = 38}}</ref> {{Equation box 1 |indent =: |title= |equation = <math>A \text{ skew-symmetric} \quad \iff \quad A^\textsf{T} = -A.</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA }} In terms of the entries of the matrix, if <math display="inline">a_{ij}</math> denotes the entry in the <math display="inline">i</math>-th row and <math display="inline">j</math>-th column, then the skew-symmetric condition is equivalent to {{Equation box 1 |indent =: |title= |equation = <math>A \text{ skew-symmetric} \quad \iff \quad a_{ij} = -a_{ji}.</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA All colors }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)