Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectrum of a C*-algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical concept}} In mathematics, the '''spectrum of a [[C*-algebra]]''' or '''dual of a C*-algebra''' ''A'', denoted ''Â'', is the set of [[unitary representation|unitary equivalence]] classes of [[irreducible representation|irreducible]] *-representations of ''A''. A [[*-representation]] π of ''A'' on a [[Hilbert space]] ''H'' is '''irreducible''' if, and only if, there is no closed subspace ''K'' different from ''H'' and {0} which is invariant under all operators π(''x'') with ''x'' ∈ ''A''. We implicitly assume that irreducible representation means ''non-null'' irreducible representation, thus excluding trivial (i.e. identically 0) representations on one-[[dimension]]al [[space (mathematics)|spaces]]. As explained below, the spectrum ''Â'' is also naturally a [[topological space]]; this is similar to the notion of the [[spectrum of a ring]]. One of the most important applications of this concept is to provide a notion of [[duality (mathematics)|dual]] object for any [[locally compact group]]. This dual object is suitable for formulating a [[Fourier transform]] and a [[Plancherel theorem]] for [[unimodular group|unimodular]] [[separable space|separable]] locally compact groups of type I and a decomposition theorem for arbitrary representations of separable locally compact groups of type I. The resulting duality theory for locally compact groups is however much weaker than the [[Tannaka–Krein duality]] theory for [[compact topological group]]s or [[Pontryagin duality]] for locally compact ''abelian'' groups, both of which are complete invariants. That the dual is not a complete invariant is easily seen as the dual of any finite-dimensional full matrix algebra M<sub>''n''</sub>('''C''') consists of a single point.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)