Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spline interpolation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Mathematical method}} {{broader|Spline (mathematics)}} {{more footnotes|date=July 2021}} In the [[mathematics|mathematical]] field of [[numerical analysis]], '''spline interpolation''' is a form of [[interpolation]] where the interpolant is a special type of [[piecewise]] [[polynomial]] called a [[spline (mathematics)|spline]]. That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the values, for example, fitting nine cubic polynomials between each of the pairs of ten points, instead of fitting a single degree-nine polynomial to all of them. Spline interpolation is often preferred over [[polynomial interpolation]] because the [[interpolation error]] can be made small even when using low-degree polynomials for the spline.<ref>{{cite journal |last1=Hall |first1=Charles A. |last2=Meyer |first2=Weston W. |title=Optimal Error Bounds for Cubic Spline Interpolation |journal=Journal of Approximation Theory |date=1976 |volume=16 |issue=2 |pages=105β122 |doi=10.1016/0021-9045(76)90040-X |doi-access=free}}</ref> Spline interpolation also avoids the problem of [[Runge's phenomenon]], in which oscillation can occur between points when interpolating using high-degree polynomials.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)