Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stable distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Distribution of variables which satisfies a stability property under linear combinations}} {{Distinguish|Stationary distribution}} {{Probability distribution | name = Stable | type = continuous | pdf_image = [[Image:Levy distributionPDF.svg|325px|Symmetric stable distributions]]<br /><small>Symmetric <math>\alpha</math>-stable distributions with unit scale factor</small><br />[[Image:Levyskew distributionPDF.svg|325px|Skewed centered stable distributions]]<br /><small>Skewed centered stable distributions with unit scale factor</small> | cdf_image = [[Image:Levy distributionCDF.svg|325px|CDFs for symmetric <math>\alpha</math>'-stable distributions]]<br /><small>CDFs for symmetric <math>\alpha</math>-stable distributions</small> <br />[[Image:Levyskew distributionCDF.svg|325px|CDFs for skewed centered Lévy distributions]]<br /><small>CDFs for skewed centered stable distributions</small> | parameters = <math>\alpha \in (0,2]</math> — stability parameter <br> <math>\beta</math> ∈ [−1, 1] — skewness parameter (note that [[skewness]] is undefined)<br> ''c'' ∈ (0, ∞) — [[scale parameter]] <br> ''μ'' ∈ (−∞, ∞) — [[location parameter]] | support = ''x'' ∈ [''μ'', +∞) if <math>\alpha < 1</math> and <math>\beta=1</math> ''x'' ∈ (-∞, ''μ''] if <math>\alpha < 1</math> and <math>\beta = -1</math> ''x'' ∈ '''R''' otherwise | pdf = not analytically expressible, except for some parameter values | cdf = not analytically expressible, except for certain parameter values | mean = ''μ'' when <math>\alpha > 1</math>, otherwise undefined | median = ''μ'' when <math>\beta = 0</math>, otherwise not analytically expressible | mode = ''μ'' when <math>\beta = 0</math>, otherwise not analytically expressible | variance = 2''c''<sup>2</sup> when <math>\alpha = 2</math>, otherwise infinite | skewness = 0 when <math>\alpha = 2</math>, otherwise undefined | kurtosis = 0 when <math>\alpha = 2</math>, otherwise undefined | entropy = not analytically expressible, except for certain parameter values | mgf = <math>\exp\!\big(t\mu + c^2t^2\big)</math> when <math>\alpha = 2</math>,<br> <math>\exp\!\big(t\mu - c^\alpha t^\alpha \sec(\pi\alpha/2)\big)</math> when <math>\alpha \neq 1, \beta = -1, t>0</math>,<br> <math>\exp\!\big(t\mu -c2\pi^{-1}t\ln t\big)</math> when <math>\alpha = 1,\beta=-1,t>0</math>,<br> otherwise undefined | char = <math>\exp\!\Big[\; it\mu - |c\,t|^\alpha\,(1-i \beta\sgn(t)\Phi) \;\Big],</math><br> where <math>\Phi = \begin{cases} \tan\tfrac{\pi\alpha}{2} & \text{if }\alpha \ne 1 \\ -\tfrac{2}{\pi}\log|t| & \text{if }\alpha = 1 \end{cases}</math>}} In [[probability theory]], a [[probability distribution|distribution]] is said to be '''stable''' if a [[linear combination]] of two [[Independence (probability theory)|independent]] [[random variable]]s with this distribution has the same distribution, [[up to]] [[location parameter|location]] and [[scale parameter|scale]] parameters. A random variable is said to be '''stable''' if its distribution is stable. The stable distribution family is also sometimes referred to as the '''Lévy alpha-stable distribution''', after [[Paul Lévy (mathematician)|Paul Lévy]], the first mathematician to have studied it.<ref name="BM 1960">{{cite journal |first=B. |last=Mandelbrot |title=The Pareto–Lévy Law and the Distribution of Income |journal=International Economic Review |volume=1 |issue=2 |year=1960 |pages=79–106 |doi=10.2307/2525289 |jstor=2525289 }}</ref><ref>{{cite book |first=Paul |last=Lévy |title=Calcul des probabilités |location=Paris |publisher=Gauthier-Villars |year=1925 |oclc=1417531 }}</ref> Of the four parameters defining the family, most attention has been focused on the stability parameter, <math>\alpha</math> (see panel). Stable distributions have <math>0 < \alpha \leq 2</math>, with the upper bound corresponding to the [[normal distribution]], and <math>\alpha=1</math> to the [[Cauchy distribution]]. The distributions have undefined [[variance]] for <math>\alpha < 2</math>, and undefined [[mean]] for <math>\alpha \leq 1</math>. The importance of stable probability distributions is that they are "[[attractor]]s" for properly normed sums of independent and identically distributed ([[iid]]) random variables. The normal distribution defines a family of stable distributions. By the classical [[central limit theorem]] the properly normed sum of a set of random variables, each with finite variance, will tend toward a normal distribution as the number of variables increases. Without the finite variance assumption, the limit may be a stable distribution that is not normal. [[Benoit Mandelbrot|Mandelbrot]] referred to such distributions as "stable Paretian distributions",<ref>{{cite journal |first=B. |last=Mandelbrot |title=Stable Paretian Random Functions and the Multiplicative Variation of Income |journal=Econometrica |volume=29 |issue=4 |pages=517–543 |year=1961 |doi=10.2307/1911802 |jstor=1911802 }}</ref><ref>{{cite journal |first=B. |last=Mandelbrot |title=The Variation of Certain Speculative Prices |journal=The Journal of Business |volume=36 |issue=4 |pages=394–419 |year=1963 |doi=10.1086/294632 |jstor=2350970 }}</ref><ref>{{cite journal |first=Eugene F. |last=Fama |title=Mandelbrot and the Stable Paretian Hypothesis |journal=The Journal of Business |volume=36 |issue=4 |pages=420–429 |year=1963 |doi=10.1086/294633 |jstor=2350971 }}</ref> after [[Vilfredo Pareto]]. In particular, he referred to those maximally skewed in the positive direction with <math>1 < \alpha < 2</math> as "Pareto–Lévy distributions",<ref name="BM 1960"/> which he regarded as better descriptions of stock and commodity prices than normal distributions.<ref name="BM 1963">{{cite journal |last=Mandelbrot |first=B. |title=New methods in statistical economics |journal=[[The Journal of Political Economy]] |volume=71 |issue=5 |pages=421–440 |year=1963 |doi=10.1086/258792 |s2cid=53004476 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)