Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
State-space representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical model of a system in control engineering}} {{distinguish|quantum state space|configuration space (physics)}}In [[control engineering]] and [[system identification]], a '''state-space representation''' is a [[mathematical model]] of a [[physical system]] that uses [[State variable|state variables]] to track how inputs shape system behavior over time through [[First-order differential equation|first-order differential equations]] or [[Difference equation|difference equations]]. These state variables change based on their current values and inputs, while outputs depend on the states and sometimes the inputs too. The '''state space''' (also called '''time-domain approach''' and equivalent to [[phase space]] in certain [[Dynamical system|dynamical systems]]) is a geometric space where the axes are these state variables, and the system’s state is represented by a state [[vector (mathematics)|vector]]. For [[Linear system|linear]], [[Time-invariant system|time-invariant]], and finite-dimensional systems, the equations can be written in [[Matrix (mathematics)|matrix]] form,<ref> {{cite book |author1=Katalin M. Hangos |author1-link=Katalin Hangos |url=https://books.google.com/books?id=-w7rbl1QKVsC&pg=PA254 |title=Intelligent Control Systems: An Introduction with Examples |author2=R. Lakner |author3=M. Gerzson |publisher=Springer |year=2001 |isbn=978-1-4020-0134-5 |page=254 |name-list-style=amp}}</ref><ref> {{cite book |author1=Katalin M. Hangos |url=https://books.google.com/books?id=Jgtwi3o-mmUC&pg=PA25 |title=Analysis and Control of Nonlinear Process Systems |author2=József Bokor |author3=Gábor Szederkényi |publisher=Springer |year=2004 |isbn=978-1-85233-600-4 |page=25 |name-list-style=amp}}</ref> offering a compact alternative to the [[frequency domain]]’s [[Laplace transform|Laplace transforms]] for [[multiple-input and multiple-output]] (MIMO) systems. Unlike the frequency domain approach, it works for systems beyond just linear ones with zero initial conditions. This approach turns [[systems theory]] into an algebraic framework, making it possible to use [[Kronecker product|Kronecker]] structures for efficient analysis. State-space models are applied in fields such as economics,<ref>{{Citation |last1=Stock |first1=J.H. |title=Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics |date=2016 |work=Handbook of Macroeconomics |volume=2 |pages=415–525 |publisher=Elsevier |language=en |doi=10.1016/bs.hesmac.2016.04.002 |isbn=978-0-444-59487-7 |last2=Watson |first2=M.W.}}</ref> statistics,<ref>{{Cite book |last1=Durbin |first1=James |title=Time series analysis by state space methods |last2=Koopman |first2=Siem Jan |date=2012 |publisher=Oxford University Press |isbn=978-0-19-964117-8 |oclc=794591362}}</ref> computer science, electrical engineering,<ref>{{Cite journal |last=Roesser |first=R. |date=1975 |title=A discrete state-space model for linear image processing |journal=IEEE Transactions on Automatic Control |volume=20 |issue=1 |pages=1–10 |doi=10.1109/tac.1975.1100844 |issn=0018-9286}}</ref> and neuroscience.<ref>{{Cite journal |last1=Smith |first1=Anne C. |last2=Brown |first2=Emery N. |date=2003 |title=Estimating a State-Space Model from Point Process Observations |journal=Neural Computation |volume=15 |issue=5 |pages=965–991 |doi=10.1162/089976603765202622 |issn=0899-7667 |pmid=12803953 |s2cid=10020032}}</ref> In [[econometrics]], for example, state-space models can be used to decompose a [[time series]] into trend and cycle, compose individual indicators into a composite index,<ref>James H. Stock & Mark W. Watson, 1989. [https://www.nber.org/chapters/c10968.pdf "New Indexes of Coincident and Leading Economic Indicators]," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.</ref> identify turning points of the business cycle, and estimate GDP using latent and unobserved time series.<ref>{{Cite journal |last1=Bańbura |first1=Marta |last2=Modugno |first2=Michele |date=2012-11-12 |title=Maximum Likelihood Estimation of Factor Models on Datasets with Arbitrary Pattern of Missing Data |journal=Journal of Applied Econometrics |volume=29 |issue=1 |pages=133–160 |doi=10.1002/jae.2306 |issn=0883-7252 |s2cid=14231301 |hdl-access=free |hdl=10419/153623}}</ref><ref>{{Citation |title=State-Space Models with Markov Switching and Gibbs-Sampling |date=2017 |work=State-Space Models with Regime Switching |pages=237–274 |publisher=The MIT Press |doi=10.7551/mitpress/6444.003.0013 |isbn=978-0-262-27711-2}}</ref> Many applications rely on the [[Kalman filter|Kalman Filter]] or a state observer to produce estimates of the current unknown state variables using their previous observations.<ref>{{Cite journal |last=Kalman |first=R. E. |date=1960-03-01 |title=A New Approach to Linear Filtering and Prediction Problems |url=https://asmedigitalcollection.asme.org/fluidsengineering/article/82/1/35/397706/A-New-Approach-to-Linear-Filtering-and-Prediction |journal=Journal of Basic Engineering |language=en |volume=82 |issue=1 |pages=35–45 |doi=10.1115/1.3662552 |issn=0021-9223 |s2cid=259115248}}</ref><ref>Harvey, Andrew C. (1990). ''Forecasting, Structural Time Series Models and the Kalman Filter''. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107049994</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)