Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stochastic process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Collection of random variables}} {{Probability fundamentals}} [[File:BMonSphere.jpg|thumb|A computer-simulated realization of a [[Wiener process|Wiener]] or [[Brownian motion]] process on the surface of a sphere. The Wiener process is widely considered the most studied and central stochastic process in probability theory.<ref name="doob1953stochasticP46to47"/><ref name="RogersWilliams2000page1"/><ref name="Steele2012page29"/>]] In [[probability theory]] and related fields, a '''stochastic''' ({{IPAc-en|s|t|ə|ˈ|k|æ|s|t|ɪ|k}}) or '''random process''' is a [[mathematical object]] usually defined as a [[Indexed family|family]] of [[random variable]]s in a [[probability space]], where the [[Index set|index]] of the family often has the interpretation of [[time]]. [[Stochastic]] processes are widely used as [[mathematical model]]s of systems and phenomena that appear to vary in a random manner. Examples include the growth of a [[bacteria]]l population, an [[electrical current]] fluctuating due to [[thermal noise]], or the movement of a [[gas]] [[molecule]].<ref name="doob1953stochasticP46to47">{{cite book|author=Joseph L. Doob|title=Stochastic processes|url=https://books.google.com/books?id=7Bu8jgEACAAJ|year=1990|publisher=Wiley|pages=46, 47}}</ref><ref name="Parzen1999">{{cite book|author=Emanuel Parzen|title=Stochastic Processes|url=https://books.google.com/books?id=0mB2CQAAQBAJ|year= 2015|publisher=Courier Dover Publications|isbn=978-0-486-79688-8|pages=7, 8}}</ref><ref name="GikhmanSkorokhod1969page1">{{cite book|author1=Iosif Ilyich Gikhman|author2=Anatoly Vladimirovich Skorokhod|title=Introduction to the Theory of Random Processes|url=https://books.google.com/books?id=q0lo91imeD0C|year=1969|publisher=Courier Corporation|isbn=978-0-486-69387-3|page=1}}</ref> Stochastic processes have applications in many disciplines such as [[biology]],<ref name="Bressloff2014">{{cite book |first=Paul C.|last=Bressloff |author-link=Paul Bressloff |title=Stochastic Processes in Cell Biology |url=https://books.google.com/books?id=SwZYBAAAQBAJ |year=2014 |publisher=Springer |isbn=978-3-319-08488-6}}</ref> [[chemistry]],<ref name="Kampen2011">{{cite book |first=N. G.|last=Van Kampen |title=Stochastic Processes in Physics and Chemistry |url=https://books.google.com/books?id=N6II-6HlPxEC |year=2011 |publisher=[[Elsevier]] |isbn=978-0-08-047536-3}}</ref> [[ecology]],<ref name="LandeEngen2003">{{cite book |first1=Russell|last1=Lande |first2=Steinar|last2=Engen |first3=Bernt-Erik|last3=Sæther |title=Stochastic Population Dynamics in Ecology and Conservation |url=https://books.google.com/books?id=6KClauq8OekC |year=2003 |publisher=[[Oxford University Press]] |isbn=978-0-19-852525-7}}</ref> [[neuroscience]],<ref name="LaingLord2010">{{cite book |first1=Carlo|last1=Laing |first2=Gabriel J.|last2=Lord |title=Stochastic Methods in Neuroscience |url=https://books.google.com/books?id=RaYSDAAAQBAJ |year=2010 |publisher=[[Oxford University Press]] |isbn=978-0-19-923507-0}}</ref> [[physics]],<ref name="PaulBaschnagel2013">{{cite book |first1=Wolfgang|last1=Paul |first2=Jörg|last2=Baschnagel |title=Stochastic Processes: From Physics to Finance |url=https://books.google.com/books?id=OWANAAAAQBAJ |year=2013 |publisher=[[Springer Science+Business Media]] |isbn=978-3-319-00327-6}}</ref> [[image processing]], [[signal processing]],<ref name="Dougherty1999">{{cite book |first=Edward R.|last=Dougherty |title=Random processes for image and signal processing |url=https://books.google.com/books?id=ePxDAQAAIAAJ |year=1999 |publisher=[[SPIE]] Optical Engineering Press |isbn=978-0-8194-2513-3}}</ref> [[stochastic control|control theory]],<ref name="Bertsekas1996">{{cite book |first=Dimitri P.|last=Bertsekas |author-link=Dimitri Bertsekas |title=Stochastic Optimal Control: The Discrete-Time Case |url=https://athenasc.com/socbook.html |year=1996 |publisher=Athena Scientific |isbn=1-886529-03-5}}</ref> [[information theory]],<ref name="CoverThomas2012page71">{{cite book |author1=Thomas M. Cover |author2=Joy A. Thomas |title=Elements of Information Theory |url=https://books.google.com/books?id=VWq5GG6ycxMC |year=2012 |publisher=[[Wiley (publisher)|John Wiley & Sons]] |isbn=978-1-118-58577-1 |page=71}}</ref> [[computer science]],<ref name="Baron2015">{{cite book |first=Michael|last=Baron |title=Probability and Statistics for Computer Scientists |edition=2nd |url=https://books.google.com/books?id=CwQZCwAAQBAJ |year=2015 |publisher=[[CRC Press]] |isbn=978-1-4987-6060-7 |page=131}}</ref> and [[telecommunications]].<ref name="BaccelliBlaszczyszyn2009">{{cite book |first1=François|last1=Baccelli |first2=Bartlomiej|last2=Blaszczyszyn |title=Stochastic Geometry and Wireless Networks |url=https://books.google.com/books?id=H3ZkTN2pYS4C |year=2009 |publisher=[[Now Publishers]] Inc. |isbn=978-1-60198-264-3}}</ref> Furthermore, seemingly random changes in [[financial market]]s have motivated the extensive use of stochastic processes in [[finance]].<ref name="Steele2001">{{cite book |first=J. Michael|last=Steele |title=Stochastic Calculus and Financial Applications |url=https://books.google.com/books?id=H06xzeRQgV4C |year=2001 |publisher=[[Springer Science+Business Media]] |isbn=978-0-387-95016-7}}</ref><ref name="MusielaRutkowski2006">{{cite book |first1=Marek|last1=Musiela |first2=Marek|last2=Rutkowski |title=Martingale Methods in Financial Modelling |url=https://books.google.com/books?id=iojEts9YAxIC |year= 2006 |publisher=[[Springer Science+Business Media]] |isbn=978-3-540-26653-2}}</ref><ref name="Shreve2004">{{cite book |first=Steven E.|last=Shreve |title=Stochastic Calculus for Finance II: Continuous-Time Models |url=https://books.google.com/books?id=O8kD1NwQBsQC |year=2004 |publisher=[[Springer Science+Business Media]] |isbn=978-0-387-40101-0}}</ref> Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include the [[Wiener process]] or Brownian motion process,{{efn|The term ''Brownian motion'' can refer to the physical process, also known as ''Brownian movement'', and the stochastic process, a mathematical object, but to avoid ambiguity this article uses the terms ''Brownian motion process'' or ''Wiener process'' for the latter in a style similar to, for example, [[Iosif Gikhman|Gikhman]] and [[Anatoliy Skorokhod|Skorokhod]]<ref name="GikhmanSkorokhod1969">{{cite book|author1=Iosif Ilyich Gikhman|author2=Anatoly Vladimirovich Skorokhod|title=Introduction to the Theory of Random Processes|url=https://books.google.com/books?id=yJyLzG7N7r8C|year=1969|publisher=Courier Corporation|isbn=978-0-486-69387-3}}</ref> or Rosenblatt.<ref name="Rosenblatt1962">{{cite book|author=Murray Rosenblatt|title=Random Processes|url=https://archive.org/details/randomprocesses00rose_0|url-access=registration|year=1962|publisher=Oxford University Press}}</ref>}} used by [[Louis Bachelier]] to study price changes on the [[Paris Bourse]],<ref name="JarrowProtter2004">{{cite book|last1=Jarrow|first1=Robert|title=A Festschrift for Herman Rubin|last2=Protter|first2=Philip|chapter=A short history of stochastic integration and mathematical finance: the early years, 1880–1970|year=2004|pages=75–80|issn=0749-2170|doi=10.1214/lnms/1196285381|citeseerx=10.1.1.114.632|series=Institute of Mathematical Statistics Lecture Notes - Monograph Series|isbn=978-0-940600-61-4}}</ref> and the [[Poisson process]], used by [[A. K. Erlang]] to study the number of phone calls occurring in a certain period of time.<ref name="Stirzaker2000">{{cite journal|last1=Stirzaker|first1=David|title=Advice to Hedgehogs, or, Constants Can Vary|journal=The Mathematical Gazette|volume=84|issue=500|year=2000|pages=197–210|issn=0025-5572|doi=10.2307/3621649|jstor=3621649|s2cid=125163415}}</ref> These two stochastic processes are considered the most important and central in the theory of stochastic processes,<ref name="doob1953stochasticP46to47"/><ref name="Parzen1999"/><ref>{{cite book|author1=Donald L. Snyder|author2=Michael I. Miller|title=Random Point Processes in Time and Space|url=https://books.google.com/books?id=c_3UBwAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4612-3166-0|page=32}}</ref> and were invented repeatedly and independently, both before and after Bachelier and Erlang, in different settings and countries.<ref name="JarrowProtter2004"/><ref name="GuttorpThorarinsdottir2012">{{cite journal|last1=Guttorp|first1=Peter|last2=Thorarinsdottir|first2=Thordis L.|title=What Happened to Discrete Chaos, the Quenouille Process, and the Sharp Markov Property? Some History of Stochastic Point Processes|journal=International Statistical Review|volume=80|issue=2|year=2012|pages=253–268|issn=0306-7734|doi=10.1111/j.1751-5823.2012.00181.x|s2cid=80836 }}</ref> The term '''random function''' is also used to refer to a stochastic or random process,<ref name="GusakKukush2010page21">{{cite book|first1=Dmytro|last1=Gusak|first2=Alexander|last2=Kukush|first3=Alexey|last3=Kulik|first4=Yuliya|last4=Mishura|author4-link=Yuliya Mishura|first5=Andrey|last5=Pilipenko|title=Theory of Stochastic Processes: With Applications to Financial Mathematics and Risk Theory|url=https://books.google.com/books?id=8Nzn51YTbX4C|year=2010|publisher=Springer Science & Business Media|isbn=978-0-387-87862-1|page=21}}</ref><ref name="Skorokhod2005page42">{{cite book|author=Valeriy Skorokhod|title=Basic Principles and Applications of Probability Theory|url=https://books.google.com/books?id=dQkYMjRK3fYC|year= 2005|publisher=Springer Science & Business Media|isbn=978-3-540-26312-8|page=42}}</ref> because a stochastic process can also be interpreted as a random element in a [[function space]].<ref name="Kallenberg2002page24"/><ref name="Lamperti1977page1">{{cite book|author=John Lamperti|title=Stochastic processes: a survey of the mathematical theory|url=https://books.google.com/books?id=Pd4cvgAACAAJ|year=1977|publisher=Springer-Verlag|isbn=978-3-540-90275-1|pages=1–2}}</ref> The terms ''stochastic process'' and ''random process'' are used interchangeably, often with no specific [[mathematical space]] for the set that indexes the random variables.<ref name="Kallenberg2002page24">{{cite book|author=Olav Kallenberg|title=Foundations of Modern Probability|url=https://books.google.com/books?id=L6fhXh13OyMC|year=2002|publisher=Springer Science & Business Media|isbn=978-0-387-95313-7|pages=24–25}}</ref><ref name="ChaumontYor2012">{{cite book|author1=Loïc Chaumont|author2=Marc Yor|title=Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, Via Conditioning|url=https://books.google.com/books?id=1dcqV9mtQloC&pg=PR4|year= 2012|publisher=Cambridge University Press|isbn=978-1-107-60655-5|page=175}}</ref> But often these two terms are used when the random variables are indexed by the [[integers]] or an [[Interval (mathematics)|interval]] of the [[real line]].<ref name="GikhmanSkorokhod1969page1"/><ref name="ChaumontYor2012"/> If the random variables are indexed by the [[Cartesian plane]] or some higher-dimensional [[Euclidean space]], then the collection of random variables is usually called a [[random field]] instead.<ref name="GikhmanSkorokhod1969page1"/><ref name="AdlerTaylor2009page7">{{cite book|author1=Robert J. Adler|author2=Jonathan E. Taylor|title=Random Fields and Geometry|url=https://books.google.com/books?id=R5BGvQ3ejloC|year=2009|publisher=Springer Science & Business Media|isbn=978-0-387-48116-6|pages=7–8}}</ref> The values of a stochastic process are not always numbers and can be vectors or other mathematical objects.<ref name="GikhmanSkorokhod1969page1"/><ref name="Lamperti1977page1"/> Based on their mathematical properties, stochastic processes can be grouped into various categories, which include [[random walk]]s,<ref name="LawlerLimic2010">{{cite book|author1=Gregory F. Lawler|author2=Vlada Limic|title=Random Walk: A Modern Introduction|url=https://books.google.com/books?id=UBQdwAZDeOEC|year= 2010|publisher=Cambridge University Press|isbn=978-1-139-48876-1}}</ref> [[Martingale (probability theory)|martingales]],<ref name="Williams1991">{{cite book|author=David Williams|title=Probability with Martingales|url=https://books.google.com/books?id=e9saZ0YSi-AC|year=1991|publisher=Cambridge University Press|isbn=978-0-521-40605-5}}</ref> [[Markov process]]es,<ref name="RogersWilliams2000">{{cite book|author1=L. C. G. Rogers|author2=David Williams|title=Diffusions, Markov Processes, and Martingales: Volume 1, Foundations|url=https://books.google.com/books?id=W0ydAgAAQBAJ&pg=PA1|year= 2000|publisher=Cambridge University Press|isbn=978-1-107-71749-7}}</ref> [[Lévy process]]es,<ref name="ApplebaumBook2004">{{cite book|author=David Applebaum|title=Lévy Processes and Stochastic Calculus|url=https://books.google.com/books?id=q7eDUjdJxIkC|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83263-2}}</ref> [[Gaussian process]]es,<ref>{{cite book|author=Mikhail Lifshits|title=Lectures on Gaussian Processes|url=https://books.google.com/books?id=03m2UxI-UYMC|year=2012|publisher=Springer Science & Business Media|isbn=978-3-642-24939-6}}</ref> random fields,<ref name="Adler2010">{{cite book|author=Robert J. Adler|title=The Geometry of Random Fields|url=https://books.google.com/books?id=ryejJmJAj28C&pg=PA1|year= 2010|publisher=SIAM|isbn=978-0-89871-693-1}}</ref> [[renewal process]]es, and [[branching process]]es.<ref name="KarlinTaylor2012">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year= 2012|publisher=Academic Press|isbn=978-0-08-057041-9}}</ref> The study of stochastic processes uses mathematical knowledge and techniques from [[probability]], [[calculus]], [[linear algebra]], [[set theory]], and [[topology]]<ref name="Hajek2015">{{cite book|author=Bruce Hajek|title=Random Processes for Engineers|url=https://books.google.com/books?id=Owy0BgAAQBAJ|year=2015|publisher=Cambridge University Press|isbn=978-1-316-24124-0}}</ref><ref name="LatoucheRamaswami1999">{{cite book|author1=G. Latouche|author2=V. Ramaswami|title=Introduction to Matrix Analytic Methods in Stochastic Modeling|url=https://books.google.com/books?id=Kan2ki8jqzgC|year=1999|publisher=SIAM|isbn=978-0-89871-425-8}}</ref><ref name="DaleyVere-Jones2007">{{cite book|author1=D.J. Daley|author2=David Vere-Jones|title=An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure|url=https://books.google.com/books?id=nPENXKw5kwcC|year= 2007|publisher=Springer Science & Business Media|isbn=978-0-387-21337-8}}</ref> as well as branches of [[mathematical analysis]] such as [[real analysis]], [[measure theory]], [[Fourier analysis]], and [[functional analysis]].<ref name="Billingsley2008">{{cite book|author=Patrick Billingsley|title=Probability and Measure|url=https://books.google.com/books?id=QyXqOXyxEeIC|year=2008|publisher=Wiley India Pvt. Limited|isbn=978-81-265-1771-8}}</ref><ref name="Brémaud2014">{{cite book|author=Pierre Brémaud|title=Fourier Analysis and Stochastic Processes|url=https://books.google.com/books?id=dP2JBAAAQBAJ&pg=PA1|year= 2014|publisher=Springer|isbn=978-3-319-09590-5}}</ref><ref name="Bobrowski2005">{{cite book|author=Adam Bobrowski|title=Functional Analysis for Probability and Stochastic Processes: An Introduction|url=https://books.google.com/books?id=q7dR3d5nqaUC|year= 2005|publisher=Cambridge University Press|isbn=978-0-521-83166-6}}</ref> The theory of stochastic processes is considered to be an important contribution to mathematics<ref name="Applebaum2004">{{cite journal|last1=Applebaum|first1=David|title=Lévy processes: From probability to finance and quantum groups|journal=Notices of the AMS|volume=51|issue=11|year=2004|pages=1336–1347}}</ref> and it continues to be an active topic of research for both theoretical reasons and applications.<ref name="BlathImkeller2011">{{cite book|author1=Jochen Blath|author2=Peter Imkeller|author3=Sylvie Roelly|author3-link=Sylvie Roelly|title=Surveys in Stochastic Processes|url=https://books.google.com/books?id=CyK6KAjwdYkC|year=2011|publisher=European Mathematical Society|isbn=978-3-03719-072-2}}</ref><ref name="Talagrand2014">{{cite book|author=Michel Talagrand|title=Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems|url=https://books.google.com/books?id=tfa5BAAAQBAJ&pg=PR4|year=2014|publisher=Springer Science & Business Media|isbn=978-3-642-54075-2|pages=4–}}</ref><ref name="Bressloff2014VII">{{cite book|author=[[Paul C. Bressloff]]|title=Stochastic Processes in Cell Biology|url=https://books.google.com/books?id=SwZYBAAAQBAJ&pg=PA1|year=2014|publisher=Springer|isbn=978-3-319-08488-6|pages=vii–ix}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)