Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Strong CP problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Question of why quantum chromodynamics does seem to not break CP-symmetry}} The '''strong CP problem''' is a question in [[particle physics]], which brings up the following quandary: why does [[quantum chromodynamics]] (QCD) seem to preserve [[CP violation#CP-symmetry|CP-symmetry]]? In particle physics, '''CP''' stands for the combination of [[C-symmetry]] (charge conjugation symmetry) and [[Parity (physics)|P-symmetry]] (parity symmetry). According to the current mathematical formulation of quantum chromodynamics, a [[CP violation|violation of CP-symmetry]] in [[strong interaction]]s could occur. However, no violation of the CP-symmetry has ever been seen in any experiment involving only the strong interaction. As there is no known reason in QCD for it to necessarily be conserved, this is a "[[Fine-tuning (physics)|fine tuning]]" problem known as the '''strong CP problem'''. The strong CP problem is sometimes regarded as an [[List of unsolved problems in physics|unsolved problem in physics]], and has been referred to as "the most underrated puzzle in all of physics."<ref>{{cite conference |first=T. |last=Mannel |title=Theory and Phenomenology of CP Violation |book-title=Nuclear Physics B |volume=167 |pages=170–174 |publisher=Elsevier |conference=The 7th International Conference on Hyperons, Charm, and Beauty Hadrons (BEACH 2006) |date=2–8 July 2006 |location=Lancaster |url=https://indico.cern.ch/event/427023/session/6/contribution/43/attachments/912026/1288208/Lancester-Mannel-Proc.pdf |doi=10.1016/j.nuclphysbps.2006.12.083 |access-date=15 Aug 2015 |bibcode=2007NuPhS.167..170M}}</ref><ref>{{Cite web | url=https://www.forbes.com/sites/startswithabang/2019/11/19/the-strong-cp-problem-is-the-most-underrated-puzzle-in-all-of-physics |title = The 'Strong CP Problem' is the Most Underrated Puzzle in All of Physics| website=[[Forbes]] }}</ref> There are several proposed solutions to solve the strong CP problem. The most well-known is [[Peccei–Quinn theory]],<ref>{{Cite journal|author1=Peccei, R.D. |author-link1=Roberto Peccei |author2=Quinn, H.R. |author-link2=Helen Quinn|year=1977|title=''CP'' conservation in the presence of pseudoparticles|url=https://www.researchgate.net/publication/248549883|journal=[[Physical Review Letters]]|volume=38|issue=25|pages=1440–1443|bibcode=1977PhRvL..38.1440P|doi=10.1103/PhysRevLett.38.1440}}</ref> involving new [[pseudoscalar]] particles called [[axion]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)