Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Student's t-distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Probability distribution}} {{About|the mathematics of Student's {{mvar|t}}-distribution|its uses in statistics|Student's t-test}} {{Infobox probability distribution | name = Student's {{mvar|t}} | type = density | pdf_image = [[File:student t pdf.svg|325px]] | cdf_image = [[File:student t cdf.svg|325px]] | parameters = <math>\nu > 0</math> [[Degrees of freedom (statistics)|degrees of freedom]] ([[Real number|real]], almost always a positive [[integer]]) | support = <math>x \in (-\infty, \infty)</math> | pdf = <math>\frac{\Gamma \left(\frac{\nu + 1}{2}\right)}{\sqrt{\pi\nu}\, \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}</math> | cdf = <math>\begin{align} & \frac{1}{2} + x \Gamma\left(\frac{\nu + 1}{2}\right) \times \\ &\quad \frac{{}_{2}F_1\!\left(\frac{1}{2}, \frac{\nu + 1}{2}; \frac{3}{2}; -\frac{x^2}{\nu}\right)} {\sqrt{\pi\nu}\, \Gamma\left(\frac{\nu}{2}\right)}, \end{align}</math> where <math>{}_{2}F_1</math> is the [[hypergeometric function]] | mean = <math>0</math> for <math>\nu > 1,</math> otherwise [[indeterminate form|undefined]] | median = <math>0</math> | mode = <math>0</math> | variance = <math>\frac{\nu}{\nu -2}</math> for <math>\nu > 2,</math> {{math|β}} for <math>1 < \nu \le 2,</math> otherwise [[indeterminate form|undefined]] | skewness = <math>0</math> for <math>\ \nu > 3\ ,</math> otherwise [[indeterminate form|undefined]] | kurtosis = <math>\frac{6}{\nu - 4}</math> for <math>\nu > 4,</math> β for <math>2 < \nu \le 4,</math> otherwise [[indeterminate form|undefined]] | entropy = <math>\begin{align} & \frac{\nu + 1}{2} \left[\psi\left(\frac{\nu + 1}{2}\right) - \psi\left(\frac{\nu}{2}\right)\right] \\ &\quad + \ln\left[\sqrt{\nu}\, \mathrm{B}\left(\frac{\nu}{2}, \frac{1}{2}\right)\right]~\text{(nats)}, \end{align}</math><br/> where : <math>\psi</math> is the [[digamma function]], : <math>\mathrm{B}</math> is the [[beta function]] | mgf = undefined | char = <math>\frac{\big(\sqrt{\nu}\, |t|\big)^{\nu/2}\, K_{\nu/2}\big(\sqrt{\nu}\, |t|\big)}{\Gamma(\nu/2)\, 2^{\nu/2-1}}</math> for <math>\nu > 0</math>,<br/> where <math>K_\nu</math> is the [[Bessel function|modified Bessel function of the second kind]]<ref>{{cite web |last=Hurst |first=Simon |title=The characteristic function of the Student {{mvar|t}} distribution |series=Financial Mathematics Research Report |volume=No. FMRR006-95 |id=Statistics Research Report No. SRR044-95 |url=http://wwwmaths.anu.edu.au/research.reports/srr/95/044/ |url-status=dead |archive-url=https://web.archive.org/web/20100218072259/http://wwwmaths.anu.edu.au/research.reports/srr/95/044/ |archive-date=February 18, 2010 }}</ref> | ES = <math>\mu + s\left(\frac{\big(\nu + [T^{-1}(1 - p)]^2\big) \times \tau\big(T^{-1}(1 - p)\big)}{(\nu - 1)(1 - p)}\right),</math> where <math>T^{-1}</math> is the inverse standardized Student {{mvar|t}} [[cumulative distribution function|CDF]], and <math>\tau</math> is the standardized Student t [[probability density function|PDF]].<ref name=norton>{{cite journal |last1=Norton |first1=Matthew |last2=Khokhlov |first2=Valentyn |last3=Uryasev |first3=Stan |year=2019 |title=Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation |journal=[[Annals of Operations Research]] |volume=299 |issue=1β2 |pages=1281β1315 |publisher=Springer|doi=10.1007/s10479-019-03373-1 |arxiv=1811.11301 |s2cid=254231768 |url=http://uryasev.ams.stonybrook.edu/wp-content/uploads/2019/10/Norton2019_CVaR_bPOE.pdf |access-date=2023-02-27}}</ref> }} In [[probability]] theory and [[statistics]], '''Student's {{mvar|t}} distribution''' (or simply the '''{{mvar|t}} distribution''') <math>t_\nu </math> is a continuous [[probability distribution]] that generalizes the [[Normal distribution#Standard normal distribution|standard normal distribution]]. Like the latter, it is symmetric around zero and bell-shaped. However, <math>t_\nu</math> has [[Heavy-tailed distribution|heavier tails]], and the amount of probability mass in the tails is controlled by the parameter <math>\nu</math>. For <math>\nu = 1</math> the Student's {{mvar|t}} distribution <math>t_\nu</math> becomes the standard [[Cauchy distribution]], which has very [[fat-tailed distribution|"fat" tails]]; whereas for <math>\nu \to \infty</math> it becomes the standard normal distribution <math>\mathcal{N}(0, 1),</math> which has very "thin" tails. The name "Student" is a pseudonym used by [[William Sealy Gosset]] in his scientific paper publications during his work at the [[Guinness Brewery]] in [[Dublin, Ireland]]. The Student's {{mvar|t}} distribution plays a role in a number of widely used statistical analyses, including [[Student's t-test|Student's {{mvar|t}}-test]] for assessing the [[statistical significance]] of the difference between two sample means, the construction of [[confidence interval]]s for the difference between two population means, and in linear [[regression analysis]]. In the form of the ''location-scale {{mvar|t}} distribution'' <math>\operatorname{\ell st}(\mu, \tau^2, \nu)</math> it generalizes the [[normal distribution]] and also arises in the [[Bayesian analysis]] of data from a normal family as a [[Compound probability distribution|compound distribution]] when marginalizing over the variance parameter.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)