Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Systolic array
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Type of parallel computing architecture of tightly coupled nodes}} {{Use dmy dates|date=October 2019}} In [[parallel computing|parallel]] [[computer architectures]], a '''systolic array''' is a homogeneous [[Graph (discrete mathematics)|network]] of tightly coupled [[data processing unit]]s (DPUs) called cells or [[Node (computer science)|node]]s. Each node or DPU independently computes a partial result as a function of the data received from its upstream neighbours, stores the result within itself and passes it downstream. Systolic arrays were first used in [[Colossus computer|Colossus]], which was an early computer used to break German [[Lorenz cipher|Lorenz]] ciphers during [[World War II]].<ref>{{YouTube |id=g2tMcMQqSbA |title=Colossus - The Greatest Secret in the History of Computing |time=41m45s}}</ref> Due to the classified nature of Colossus, they were independently invented or rediscovered by [[H. T. Kung]] and [[Charles Leiserson]] who described arrays for many dense linear algebra computations (matrix product, solving systems of [[linear equation]]s, [[LU decomposition]], etc.) for banded matrices. Early applications include computing [[greatest common divisor]]s of integers and polynomials.<ref>{{Cite web | url=http://www.eecs.harvard.edu/~htk/publication/1984-ieeetoc-brent-kung.pdf | title=Systolic VLSI Arrays for Polynomial GCD Computation | first1=Richard P. | last=Brent | first2=H.T. | last2=Kung | website=www.eecs.harvard.edu | date=August 1984}}</ref> They are sometimes classified as [[Multiple instruction, single data|multiple-instruction single-data]] (MISD) architectures under [[Flynn's taxonomy]], but this classification is questionable because a strong argument can be made to distinguish systolic arrays from any of Flynn's four categories: [[Single instruction, single data|SISD]], [[Single instruction, multiple data|SIMD]], [[Multiple instruction, single data|MISD]], [[Multiple instruction, multiple data|MIMD]], as discussed later in this article. The parallel input [[data]] flows through a network of hard-wired [[Microprocessor|processor]] nodes, which combine, process, [[merge algorithm|merge]] or [[sorting algorithm|sort]] the input data into a derived result. Because the [[wave]]-like propagation of data through a systolic array resembles the [[pulse]] of the human circulatory system, the name ''systolic'' was coined from medical terminology. The name is derived from [[systole]] as an analogy to the regular pumping of blood by the heart.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)