Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tesseract
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Four-dimensional analogue of the cube}} {{about|the geometric shape}} {{Infobox polychoron | Name=Tesseract<br />8-cell<br />(4-cube) | Image_File=8-cell-simple.gif | Type=[[Convex regular 4-polytope]] | Family=[[Hypercubes]] | Last=[[Omnitruncated 5-cell|9]] | Index=10 | Next=[[Rectified tesseract|11]] | Schläfli={4,3,3}<br />t<sub>0,3</sub>{4,3,2} or {4,3}×{ }<br />t<sub>0,2</sub>{4,2,4} or {4}×{4}<br />t<sub>0,2,3</sub>{4,2,2} or {4}×{ }×{ }<br />t<sub>0,1,2,3</sub>{2,2,2} or { }×{ }×{ }×{ } | CD={{CDD|node_1|4|node|3|node|3|node}}<br />{{CDD|node_1|4|node|3|node|2|node_1}}<br />{{CDD|node_1|4|node|2|node_1|4|node}}<br />{{CDD|node_1|4|node|2|node_1|2|node_1}}<br />{{CDD|node_1|2|node_1|2|node_1|2|node_1}} | Cell_List=8 [[cube|{4,3}]] [[File:Hexahedron.png|20px]] | Face_List=24 [[Square (geometry)|{4}]] | Edge_Count=32 | Vertex_Count=16 | Petrie_Polygon=[[octagon]] | Coxeter_Group=B<sub>4</sub>, [3,3,4] | Vertex_Figure=[[File:8-cell verf.svg|80px]]<br />[[Tetrahedron]] | Dual=[[16-cell]] | Property_List=[[Convex polytope|convex]], [[isogonal figure|isogonal]], [[isotoxal figure|isotoxal]], [[isohedral figure|isohedral]], [[Hanner polytope]] }} {{wikt | tesseract}} [[File:8-cell net.png|thumb|The [[Dali cross|Dalí cross]], a [[Net (polyhedron)|net]] of a tesseract]] [[File:Net of tesseract.gif|thumb|The tesseract can be unfolded into eight cubes into 3D space, just as the cube can be unfolded into six squares into 2D space.]] In [[geometry]], a '''tesseract''' or '''4-cube''' is a [[four-dimensional space|four-dimensional]] [[hypercube]], analogous to a two-[[dimension]]al [[square (geometry)|square]] and a three-dimensional [[cube]].<ref>{{Cite web|title= The Tesseract - a 4-dimensional cube|url= https://www.cut-the-knot.org/ctk/Tesseract.shtml|access-date= 2020-11-09|website= www.cut-the-knot.org}}</ref> Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square [[Face (geometry) |faces]], the [[hypersurface]] of the tesseract consists of eight cubical [[cell (geometry) |cells]], meeting at [[right angle]]s. The tesseract is one of the six [[convex regular 4-polytope]]s. The tesseract is also called an '''8-cell''', '''C<sub>8</sub>''', (regular) '''octachoron''', or '''cubic prism'''. It is the four-dimensional '''measure polytope''', taken as a unit for hypervolume.<ref>{{Cite book |last=Elte |first=E. L. |author-link=Emanuel Lodewijk Elte |title=The Semiregular Polytopes of the Hyperspaces |date=2005 |publisher=University of Groningen |isbn=1-4181-7968-X |location=Groningen }}</ref> [[Harold Scott MacDonald Coxeter| Coxeter]] labels it the {{math|''γ''<sub>4</sub>}} polytope.{{Sfn|Coxeter|1973|pp=122-123|loc=§7.2. illustration Fig 7.2<small>C</small>}} The term ''hypercube'' without a dimension reference is frequently treated as a synonym for this specific [[polytope]]. The ''[[Oxford English Dictionary]]'' traces the word ''tesseract'' to [[Charles Howard Hinton]]'s 1888 book ''[[A New Era of Thought]]''. The term derives from the [[Ancient Greek| Greek]] {{lang|grc-Latn|téssara}} ({{wikt-lang|grc|τέσσαρα}} 'four') and {{lang|grc-Latn|aktís}} ({{wikt-lang|grc|ἀκτίς}} 'ray'), referring to the four edges from each vertex to other vertices. Hinton originally spelled the word as ''tessaract''.<ref> {{cite OED|term=tesseract|ID=199669}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)